Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Res ; 242: 117798, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040175

RESUMEN

Ramie (Boehmeria nivea L.) is an ideal crop for cadmium (Cd) pollution remediation due to its advantages of both remediating and utilizing, however, it is mainly carried out in dry land, whose restoration effect is relatively slow. Previously, we found that the ramie plants cultivated by hydroponics has several tens of times higher Cd absorption capacity than that planted in soil. However, the issue of how to use hydroponic ramie to remediate Cd contaminated paddy fields needs to be addressed. In this study, we innovatively developed the ramie floating island technology and studied its remediation model on simulated Cd contaminated paddy fields. Different ramie varieties were used to compare the remediation effects, and the results showed that there were differences in adaptability among different varieties on floating islands and the remediation ability of the tested ramie varieties was Z2 > Z1 > Z3. Different harvested times were set to analyze the effects of harvested model on remediation, and it was suggested that multiple harvests can be carried out according to the plant growth status of ramie floating island after 30 days of remediation to achieve better remediation effects. Low water level height (5 cm) of paddy field was beneficial for the accumulation of Cd in the roots, but considering the adaptability of various ramie varieties and the effect of long-term restoration, it was recommended that the water level height of 20 cm for the cultivation of ramie floating island was more suitable. Moreover, we found that low concentration of citric acid (≤2 g L-1) or polyaspartic acid (≤3 g L-1) can improve the remediation effects for ramie floating island. Our study opens up a novel approach for ramie to remediate heavy metal pollution and provides a technical reference for water body Cd remediation by plants.


Asunto(s)
Boehmeria , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Cadmio , Agua
2.
Genomics ; 114(2): 110275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35108591

RESUMEN

MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no study is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYBs) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYBs under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8, AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of the AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 for example, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analyses suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.


Asunto(s)
Apocynum , Arabidopsis , Apocynum/genética , Apocynum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894962

RESUMEN

The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.


Asunto(s)
Boehmeria , Boehmeria/genética , Boehmeria/metabolismo , Transcriptoma , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36902009

RESUMEN

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.


Asunto(s)
Apocynum , Factores de Transcripción , Factores de Transcripción/metabolismo , Trehalosa , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Filogenia , Familia de Multigenes
5.
Environ Monit Assess ; 195(8): 1009, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522949

RESUMEN

Remediation of cadmium (Cd) pollution is one of the priorities of global environmental governance and accurate detection of Cd content is a key link in remediation of Cd pollution. This study aimed to compare three methods (inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and graphite furnace-atomic absorption spectrometry (GF-AAS)) for the determination of Cd with different tissues of various ramie varieties, and distinguish the advantage and disadvantage of each method. In total, 162 samples of ramie (Boehmeria nivea L.), which is an ideal plant for heavy metal remediation, were detected and the results showed that the three methods were all suitable for the de-termination of Cd content in ramie. ICP-OES and ICP-MS were simpler, faster, and more sensitive than GF-AAS. ICP-MS could be recommended for the determination of samples with various concentrations of Cd. ICP-OES could be used for measurement of samples with > 100 mg/kg Cd content, while GF-AAS was suitable for the detection of samples with very high (> 550 mg/kg) or very low (< 10 mg/kg) Cd content. Overall, considering the accuracy, stability, and the cost of measurement, ICP-MS was the most suitable method for determination of Cd content. This study provides significant reference information for the research in the field of Cd pollution remediation.


Asunto(s)
Boehmeria , Grafito , Cadmio , Conservación de los Recursos Naturales , Política Ambiental , Monitoreo del Ambiente
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499437

RESUMEN

AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.


Asunto(s)
Boehmeria , Boehmeria/genética , Boehmeria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Filogenia , Fitomejoramiento , Estrés Fisiológico/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas
7.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364168

RESUMEN

In the current study, the total content from two Apocynum species leaves (Apocynum venetum and Apocynum hendersonii) collected from the Ili River Valley Region were extracted, and their bioactivities were investigated. The results showed a significant variation in the total flavonoid contents in the leaf samples collected at different periods (June, July, August, and September), with the highest content in August (60.11 ± 0.38 mg RE/g DW for A. venetum and 56.56 ± 0.24 mg RE/g DW for A. hendersonii), and the lowest in June (22.36 ± 0.05 mg RE/g DW for A. venetum and 20.79 ± 0.02 mg RE/g DW for A. hendersonii). The total flavonoid content was comparably higher in A. venetum than in A. hendersonii. Leaves extracts from the two species demonstrated strong bioactivity, which positively correlated with the total flavonoid contents. The anti-oxidative activity of A. venetum was higher than that of A. hendersonii in tandem with its higher flavonoid contents; the antibacterial activity, however, was conversely opposite. Furthermore, a total of 83 flavonoid metabolites were identified in the two species based on UPLC-ESI-MS/MS, out of which 24 metabolites were differentially accumulated. The variability in these metabolites might be the reason for the different bioactivities displayed by the two species. The present study provides insight into the optimal harvest time for Apocynum species planted in the major distribution area of the Ili River Valley and the specific utilization of A. venetum and A. hendersonii.


Asunto(s)
Apocynum , Flavonoides/farmacología , Flavonoides/análisis , Espectrometría de Masas en Tándem , Ríos , Hojas de la Planta/química
8.
BMC Genomics ; 22(1): 684, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34548018

RESUMEN

BACKGROUND: The bast fiber crop ramie can be used as high-quality forage resources, especially in tropical or subtropical region where there is lack of high-quality protein feed. Hongxuan No.1 (HX_1) is a unique ramie variety with a light reddish brown leaf color, which is obviously different from elite cultivar, Zhongzhu No.1 (ZZ_1, green leaf). While, the regulatory mechanism of color difference or secondary metaboliates synthesis between these two varieties have not been studied. RESULTS: In this study, phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 were conducted to elucidate the mechanism of leaf color formation. Chromaticity value and pigment content measuring showed that anthocyanin was the main metabolites imparting the different leaf color phenotype between the two varieties. Based on LC/MS, at least 14 anthocyanins were identified in leaves of HX_1 and ZZ_1, and the HX_1 showed the higher relative content of malvidin-, pelargonidin-,and cyanidin-based anthocyanins. Transcriptome and metabolome co-analysis revealed that the up-regulated expression of flavonoids synthesis gene was positively correlated with total anthocyanins accumulation in ramie leaf, and the differentfially expression of "blue gene" (F3'5'H) and the "red gene" (F3'H) in leaves bring out HX_1 metabolic flow more input into the cyanidin branch. Furthermore, the enrichment of glycosylated modification pathway (UGT and AT) and the expression of flavonoid 3-O-glucosyl transferase (UFGT), anthocyanidin reductase (ANR), in leaves were significantly influenced the diversity of anthocyanins between HX_1 and ZZ_1. CONCLUSIONS: Phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 indicated that the expression levels of genes related to anthocyanin metabolism contribute to the color formation of ramie variety. Anthocyanins are important plant secandary metabilates with many physiological functions, the results of this study will deepened our understanding of ramie leaf color formation, and provided basis for molecular breeding of functional forage ramie.


Asunto(s)
Boehmeria , Antocianinas/metabolismo , Color , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
9.
BMC Plant Biol ; 18(1): 369, 2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30577815

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation. RESULTS: Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie. CONCLUSIONS: This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.


Asunto(s)
Boehmeria/genética , Cadmio/toxicidad , Genoma de Planta/genética , MicroARNs/genética , Boehmeria/metabolismo , Boehmeria/fisiología , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/fisiología , MicroARNs/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , ARN de Planta/genética , Análisis de Secuencia de ADN , Estrés Fisiológico
10.
BMC Plant Biol ; 18(1): 345, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30541445

RESUMEN

BACKGROUND: Ramie (Boehmeria nivea L.) is one of the most important natural fiber crops and an important forage grass in south China. Ramet number, which is a quantitative trait controlled by multigenes, is one of the most important agronomic traits in plants because the ramet number per plant is a key component of grain yield and biomass. However, the genetic variation and genetic architecture of ramie ramet number are rarely known. RESULTS: A genome-wide association study was performed using a panel of 112 core germplasms and 108,888 single nucleotide polymorphisms (SNPs) detected using specific-locus amplified fragment sequencing technology. Trait-SNP association analysis detected 44 significant SNPs that were associated with ramet number at P < 0.01. The favorable SNP Marker20170-64 emerged at least twice in the three detected stages and was validated to be associated with the ramie ramet number using genomic DNA polymerase chain reaction with an F1 hybrid progeny population. Comparative genome analysis predicted nine candidate genes for ramet number based on Marker20170-64. Real-time quantitative polymerase chain reaction analysis indicated that six of the genes were specific to upregulation in the ramie variety with high ramet number. These results suggest that these genes could be considered as ramet number-associated candidates in ramie. CONCLUSIONS: The identified loci or genes may be promising targets for genetic engineering and selection for modulating the ramet number in ramie. Our work improves understanding of the genetics of ramet number in ramie core germplasms and provides tools for marker-assisted selection for improvement of agricultural traits.


Asunto(s)
Boehmeria/genética , Genes de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Boehmeria/fisiología , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Carácter Cuantitativo Heredable
11.
Int J Phytoremediation ; 20(6): 545-551, 2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29688056

RESUMEN

By using a hydroponic culture system, the terrestrial fiber crop ramie can growth optimally in aquatic environment and enhance exponentially quantities of high quality seedlings for subsequent field cultivation. In this study, the survival rate of ramie seedling was more than 97% when cultured using the novel hydroponic method. Further physiological analysis of the hydroponic ramie to different concentration of livestock wastewater demonstrated that all of these ramies can survival in livestock wastewater, but the 4 times diluted livestock wastewater (total N: 100.9 mg L-1, total P: 2.69 mg L-1) was more appropriate for ramie growth. The nutrients N and P in livestock wastewater were significantly decreased by the growth of ramie, and the removal efficiency of total N and total P in the 4 times diluted livestock wastewater achieved 78.1% and 43.1% respectively within 5 weeks. In conclusion, our studies highlight that the combination of ramie and the hydroponic technology resulted to be effective in the phytoremediation of livestock wastewater.


Asunto(s)
Boehmeria , Aguas Residuales/análisis , Animales , Biodegradación Ambiental , Hidroponía , Ganado , Nitrógeno/análisis , Fósforo/análisis
12.
Plant Physiol Biochem ; 216: 109101, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39255614

RESUMEN

Waterlogging stress is a severe abiotic challenge that impedes plant growth and development. Ramie (Boehmeria nivea L.) is a Chinese traditional characteristic economic crop, valued for its fibers and by-products. To investigate the waterlogging tolerance of ramie and provide the scientific basis for selecting waterlogging-tolerant ramie varieties, this study examined the morphological, physiological, biochemical, and molecular responses of 15 ramie germplasms (varieties) under waterlogging stress. The results revealed varied impacts of waterlogging stress across the 15 ramie varieties, characterized by a decrease in SPAD values, net photosynthesis rates, and relative water content of ramie leaves, along with a significant increase in relative conductivity and the activities of antioxidant enzymes such as SOD, POD, CAT, and APX. Additionally, the levels of soluble sugars, soluble proteins, and free proline exhibited varying degrees of increase. Through Principal Component Analysis (PCA), ZZ_2 and ZSZ_1 were identified as relatively tolerant and susceptible varieties. Transcriptome analysis showed that the differential expressed genes between ZZ_2 and ZSZ_1 were significantly enriched in metabolic pathways, ascorbate and aldarate metabolism, and inositol phosphate metabolism, under waterlogging stress. In addition, the expression of hypoxia-responsive genes was higher in ZZ_2 than in ZSZ_1 under waterlogging stress. These differences might account for the varied waterlogging responses between the two varieties. Therefore, this study explored the morpho-physiological responses of ramie under waterlogging stress and identified the molecular mechanisms involved, providing valuable insights for improving ramie varieties and breeding new ones.

13.
Int J Biol Macromol ; 263(Pt 2): 130104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350586

RESUMEN

Ramie is a valuable crop that produces high-quality fibers and holds promise in ecological management and potential therapeutic properties. The damage of submergence during the fertile period seriously affects the growth of ramie. This study used transcriptomics and UPLC-QTOF/MS-based lipidomics analysis to reveal the lipids remodeling and stress adaptation mechanism in ramie response to submergence. The results of subcellular distribution showed that lipids in ramie leaf cells mostly aggregate in the inter-chloroplast cytoplasm to form lipid droplets under submergence stress. High-performance thin-layer chromatography (HPTLC) and lipidomics analysis showed that the composition and content of lipids in ramie leaves significantly changed under submergence stress, and the content of fatty acids (FAs) gradually accumulated with the extension of the submergence treatment time. Further analysis revealed that the content of 18:3 (n3) Coenzyme A (C18:3-CoA) increased significantly with the prolongation of submergence stress, and the exogenous addition of C18:3-CoA activated the expression of hypoxia-responsive marker genes such as BnADH1, BnPCO2, BnADH1, and BnPDC1. These results suggest that the ramie lipid metabolism pathways were significantly affected under submergence, and the C18:3-CoA may act directly or indirectly on the hypoxia-responsive genes to activate their transcriptional activities, thereby enhancing the tolerance of ramie to submergence stress.


Asunto(s)
Boehmeria , Ácidos Grasos , Ácidos Grasos/metabolismo , Boehmeria/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Hipoxia/genética
14.
Food Chem ; 460(Pt 2): 140453, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067428

RESUMEN

Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Antioxidantes , Macrófagos , Extractos Vegetales , Polisacáridos , Animales , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Células RAW 264.7 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Antioxidantes/química , Antioxidantes/farmacología , Masculino , Óxido Nítrico/metabolismo , Peso Molecular , Edema/tratamiento farmacológico , Edema/inducido químicamente , Hojas de la Planta/química , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo
15.
Chemosphere ; 337: 139298, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391082

RESUMEN

Ramie is an ideal crop for remediation of cadmium (Cd) contaminated soil. However, there is a lack of rapid and effective evaluation system for Cd tolerance of ramie germplasms, and also a lack of systematic and in-depth research under Cd contaminated field conditions. This study innovatively developed a rapid screening system of "hydroponics-pot planting", and 196 core germplasms were used to quickly and effectively identify their Cd tolerance and Cd enrichment capacity. Then, two excellent varieties were selected to carry out a 4 years of field experiment under Cd contaminated field to study the remediation model, evaluation of reuse after repair and the mechanism of microbial regulation. The results showed that ramie adopted the cycle mode of "Absorption-activating soil Cd-Migration-Absorption" to remediate on Cd contaminated field, and the application of ramie for remediation had good ecological and economic benefits. Ten dominant genera such as Pseudonocardiales, as well as the key functional genes (mdtC, mdtB, mdtB/yegN, actR, rpoS, and ABA transporter gene) in rhizosphere soil, were identified to participate in activating Cd in rhizosphere soil and promoting ramie to enrich Cd. This study provides a technical route and practical production experience for the research field of phytoremediation of heavy metal pollution.


Asunto(s)
Boehmeria , Metales Pesados , Contaminantes del Suelo , Cadmio , Biodegradación Ambiental , Suelo
16.
Front Genet ; 14: 1080909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896232

RESUMEN

Gene family, especially MYB as one of the largest transcription factor family in plants, the study of its subfunctional characteristics is a key step in the study of plant gene function. The sequencing of ramie genome provides a good opportunity to study the organization and evolutionary characters of the ramie MYB gene at the whole genome level. In this study, a total of 105 BnGR2R3-MYB genes were identified from ramie genome and subsequently grouped into 35 subfamilies according to phylogeny divergence and sequences similarity. Chromosomal localization, gene structure, synteny analysis, gene duplication, promoter analysis, molecular characteristics and subcellular localization were accomplished using several bioinformatics tools. Collinearity analysis showed that the segmental and tandem duplication events is the dominant form of the gene family expansion, and duplications prominent in distal telomeric regions. Highest syntenic relationship was obtained between BnGR2R3-MYB genes and that of Apocynum venetum (88). Furthermore, transcriptomic data and phylogenetic analysis revealed that BnGMYB60, BnGMYB79/80 and BnGMYB70 might inhibit the biosynthesis of anthocyanins, and UPLC-QTOF-MS data further supported the results. qPCR and phylogenetic analysis revealed that the six genes (BnGMYB9, BnGMYB10, BnGMYB12, BnGMYB28, BnGMYB41, and BnGMYB78) were cadmium stress responsive genes. Especially, the expression of BnGMYB10/12/41 in roots, stems and leaves all increased more than 10-fold after cadmium stress, and in addition they may interact with key genes regulating flavonoid biosynthesis. Thus, a potential link between cadmium stress response and flavonoid synthesis was identified through protein interaction network analysis. The study thus provided significant information into MYB regulatory genes in ramie and may serve as a foundation for genetic enhancement and increased productivity.

17.
Biology (Basel) ; 12(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132301

RESUMEN

A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.

18.
iScience ; 26(5): 106772, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250304

RESUMEN

Apocynum species have great application prospects in textile and phytoremediation of saline soil, are rich in flavonoids, and possess medicinal significance. Here, we report the draft genomes of Apocynum venetum and Apocynum hendersonii, and elucidate their evolutionary relationship. The high synteny and collinearity between the two suggested that they have experienced the same WGD event. Comparative analysis revealed that flavone 3-hydroxylase (ApF3H) and differentially evolved flavonoid 3-O-glucosyl transferase (ApUFGT) genes are critical for determining natural variation in flavonoid biosynthesis between the species. Overexpression of ApF3H-1 enhanced the total flavonoid content and promoted the antioxidant capacity of transformed plants compared to the wild-type. ApUFGT5 and 6 explained the diversification of flavonoids or their derivatives. These data provide biochemical insight and knowledge on the genetic regulation of flavonoid biosynthesis, supporting the adoption of these genes in breeding programs aimed at the multipurpose utilization of the plants.

19.
Front Plant Sci ; 13: 812988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432436

RESUMEN

A total of 60 WRKY family genes of ramie were identified in the ramie. The genes were unevenly distributed across 14 chromosomes in the specie and highly concentrated (72%) in the distal telomeric region. Phylogenetic analysis placed these genes into seven distinct subfamilies groups: I, II (a, b, c, d, e), and III, with group IIc containing only the variant of heptapetide sequence (WRKYGKK). Segmental duplication events (41.7%) was found to be the main driver of BnGWRKY evolution. Thirty eight from among the genes showed collinear relationships with WRKY genes from Arabidopsis thaliana, Cannabis sativa, Oryza sativa, and Zea mays. The number and density of stress and hormone responsives cis-acting elements were comparably higher than other elements, with abundant ARE and rare LTR cis-acting elements indicating the long-standing adaptability of ramie to its natural environment. GO and KEGG enrichment analysis of the WRKY target genes revealed their involvement in response to stimuli, immune system processes, transporter protein activity and antioxidant activity. Expression analysis show that most WRKYs were activated by the cadmium stress, more especially the BnGWRKY2, BnGWRKY15, BnGWRKY20, BnGWRKY50 and BnGWRKY58. Combining transcriptome, orthologous gene relationships and qPCR result, we established the possible involvement of BnGWRKY50 and BnGWRKY58 in crosstalk mechanism between secondary cell wall thickening and Cd2+ stress. This provided information into the role of BnGWRKY proteins in ramie secondary wall development and cadmium stress response to, and could serve as basis for improvement of the ramie.

20.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956439

RESUMEN

Apocynum hendersonii is a traditional medicinal plant used primarily as tea. It has a potential health benefit from its rich bioactive substances. This study investigated the reactivity of solvents of different polarities (ethanol, ethyl acetate, n-hexane, methanol, and water) extracts of the A. hendersonii leaf. The phytochemical composition of the extracts was evaluated using a Fourier Transform Infrared spectrophotometer (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS), UHPLC-MS, and Higher Performance Liquid Chromatography (HPLC). The result revealed the presence of medicinally important bioactive constituents, including phenols, flavonoids, and polysaccharides. Methanol extracts exhibited the highest flavonoid contents (20.11 ± 0.85 mg QE/g DW) and the second-highest in terms of phenolic (9.25 ± 0.03 mg GAE/g DW) and polysaccharide (119.66 ± 2.65 mg GE/g DW). It also had the highest antioxidant capacity with 60.30 ± 0.52% and 4.60 ± 0.02 µmol Fe2+ per g DW based on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ferric reducing antioxidant power (FRAP), respectively. Ethanol extract displayed the maximum antibacterial action against Gram-negative and Gram-positive bacteria and the highest inhibition activity against the enzymes tyrosinase and acetylcholinesterase, followed by methanol extract. The principal component analysis revealed a positive correlation between the constituents, bioactivities, and extracts. The overall result showed A. hendersonii as a rich natural source of antimicrobial and antioxidant bioactive compounds and may be used for future applications in pharmaceuticals and food industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA