Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116172, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458072

RESUMEN

The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.


Asunto(s)
Glioblastoma , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Movimiento Celular
2.
Ecotoxicol Environ Saf ; 234: 113357, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35272197

RESUMEN

Aryl hydrocarbon receptor (AhR) is a ligand-activated receptor to mediates the biological reactions of many environmental and natural compounds, which is highly expressed in glioblastoma. Although it has been reported that AhR agonist emodin can suppress some kinds of tumors, its inhibitory effect on glioblastoma migration and its relationship with AhR remain unclear. Based on the complexity of tumor pathogenesis and the tissue specificity of AhR, we hope can further understand the effect of emodin on glioblastoma and explore its mechanism. We found that the inhibitory effect of emodin on the migration of U87 glioblastoma cells increased with time, and the cell migration ability was inhibited by about 25% after 36 h exposure. In this process, emodin promoted the expression of the tumor suppressor IL24 by activating the AhR signaling pathway. Reducing the expression of AhR or IL24 by interfering RNA could block or relieve the inhibitory effect of emodin on the U87 cells migration, which indicates the inhibition of emodin on the migration of glioblastoma is mediated by the AhR-IL24 axis. Our data proved the AhR-IL24 signal axis is an important pathway for emodin to inhibit the migration of glioblastoma, and the AhR signaling pathway can be used as a key target to research the regulation effect and its mechanism of compounds on glioblastoma migration.

3.
Ecotoxicol Environ Saf ; 247: 114199, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36274317

RESUMEN

1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , FN-kappa B/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Carbazoles , Apoptosis
4.
J Neurochem ; 158(6): 1254-1262, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33278027

RESUMEN

Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.


Asunto(s)
Acetilcolinesterasa/metabolismo , Dioxinas/metabolismo , Neuronas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Dioxinas/toxicidad , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos
5.
Med Sci Monit ; 27: e929219, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795629

RESUMEN

BACKGROUND Cornus officinalis (CO), also known as 'Shanzhuyu', is one of the most common traditional Chinese herbs used against osteoporosis. Although previous studies have found that CO has beneficial effects in alleviating osteoporosis, its mechanisms remain unclear. MATERIAL AND METHODS In this study, we applied system bioinformatic approaches to investigate the possible therapeutic mechanisms of CO against osteoporosis. We collected the active ingredients of CO and their targets from the TCMSP, BATMAN-TCM, and ETCM databases. Next, we obtained the osteoporosis targets from differentially expressed mRNAs from the Gene Expression Omnibus (GEO) gene series (GSE35958). Next, the shared genes of the CO pharmacological targets and osteoporosis-related targets were selected to construct the protein-protein interaction network, based on the results from the STRING database. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out by using the clusterProfiler package in R software. RESULTS In all, there were 58 unique CO compounds and 518 therapeutic targets. Based on the GO and KEGG enrichment results of 98 common genes, we selected the top 25 terms, based on the terms' P values. We found that the anti-osteoporotic effect of CO may mostly involve the regulation of calcium metabolism and reactive oxygen species, and the estrogen signaling pathway and osteoclast differentiation pathway. CONCLUSIONS We found the possible mechanisms of CO in treating osteoporosis may be based on multiple targets and pathways. We also provided a theoretical basis and promising direction for investigating the exact anti-osteoporotic mechanisms of CO.


Asunto(s)
Cornus/inmunología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Osteoclastos/fisiología , Osteoporosis/tratamiento farmacológico , Diferenciación Celular , Biología Computacional , Simulación por Computador , Estrógenos/metabolismo , Ontología de Genes , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
J Environ Sci (China) ; 76: 368-376, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528028

RESUMEN

Emerging evidence showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) could induce expression of certain reactivation-associated genes in astrocytes, however, the consequent cellular effects and molecular mechanisms are still unclear. During the process of astrocyte reactivation, migration is a critical cellular event. In the present study, we employed wound-healing assay and Transwell® motility assay to explore the effects of TCDD on cell migration in primary cultured rat cortical astrocytes. We found that upon TCDD treatments at relative low concentrations (10-10 and/or 10-9 mol/L), the ability of primary astrocytes to migrate horizontally and vertically was promoted. In line with this cellular effect, the mRNA expression of two pro-migratory genes, including cell division cycle 42 (CDC42) and matrix metalloproteinase 2 (MMP2) was induced by TCDD treatment. Dioxin exerts its toxic effects mainly through aryl hydrocarbon receptor (AhR) pathway. So the role of AhR pathway in the pro-migratory effects of TCDD was examined using an AhR antagonist, CH223191. We found that application of CH223191 significantly reversed the pro-migratory effects of TCDD. Interestingly, the basal ability of horizontal migration as well as basal levels of CDC42 and MMP2 expression were dramatically reduced suggesting a possible physiological role of AhR in maintaining the endogenous migration ability of the primary astrocytes. These findings support the notion that dioxin promotes astrocyte reactivation at molecular and cellular levels.


Asunto(s)
Astrocitos/citología , Astrocitos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Ratas , Ratas Sprague-Dawley
7.
Environ Sci Technol ; 52(15): 8065-8074, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995397

RESUMEN

Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Biomarcadores , Monitoreo del Ambiente
8.
Saudi Pharm J ; 26(3): 342-348, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29556125

RESUMEN

Polylactide-poly(ethylene glycol) (PLA-PEG) block copolymers were synthesized by ring opening polymerization of l-lactide using a monomethoxy PEG (mPEG) as macroinitiator and zinc lactate as catalyst. The resulting diblock copolymers were characterized by 1H NMR and GPC. Polymeric micelles were prepared by self-assembly of copolymers in distilled water using co-solvent evaporation or membrane hydration methods. The resulting micelles are worm-like in shape as shown by TEM measurements. A hydrophobic anticancer drug, cycloprotoberberine derivative A35, was successfully loaded in PLA-PEG filomicelles with high encapsulation efficiency (above 88%). Berberine (BBR) was studied for comparison. In both methods, PLA-PEG filomicelles were prepared with a theoretical loading of 5%, 10% and 20%. Physical stability studies indicated that BBR/A35-loaded filomicelles were more stable when stored at 4 °C than at 25 °C. Compared with BBR-loaded filomicelles, A35-loaded filomicelles exhibited higher antitumor activity. Importantly, the in vitro cytotoxicity and stability of A35-loaded filomicelles evidenced the potential of drug-loaded filomicelles in the development of drug delivery systems.

9.
J Environ Sci (China) ; 63: 260-267, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406108

RESUMEN

Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect.


Asunto(s)
Dioxinas/toxicidad , Contaminantes Ambientales/toxicidad , Acetilcolinesterasa/metabolismo , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/metabolismo , Neuroblastoma , Pruebas de Toxicidad
10.
J Environ Sci (China) ; 62: 92-99, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29289296

RESUMEN

Several cohort studies have reported that dioxin and dioxin-like polychlorinated biphenyls might impair the nervous system and lead to neurological or neurodegenerative diseases in the elder people, but there is limited research on the involved mechanism. By using microarray analysis, we figured out the differentially expressed genes between brain samples from SD rats after low-dose (0.1µg/(kg▪bw)) dioxin exposure for six months and controls. To investigate the function changes in the course of dioxin exposure, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the differentially expressed genes. And the changes of several picked genes have been verified by real-time PCR. A total of 145 up-regulated and 64 down-regulated genes were identified. The metabolic processes, interleukin-1 secretion and production were significantly associated with the differentially expressed genes. And the genes regulated by dioxin also clustered to cholinergic synapse and long-term potentiation. Candidate biomarker genes such as egr1, gad2, gabrb3, abca1, ccr5 and pycard may be toxicological targets for dioxin. Furthermore, synaptic plasticity and neuro-immune system may be two principal affected areas by dioxin.


Asunto(s)
Encéfalo/fisiología , Expresión Génica/efectos de los fármacos , Sustancias Peligrosas/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Animales , Ratas , Pruebas de Toxicidad Crónica , Regulación hacia Arriba
11.
Biomed Chromatogr ; 30(11): 1789-1795, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27129716

RESUMEN

A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid-liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5-100.0 ng/mL for ambroxol and 0.2-20.0 ng/mL for salbutamol, with intra- and inter-run precision (relative standard deviation) <15% and accuracy (relative error) ranging from 97.7 to 112.1% for ambroxol and from 94.5 to 104.1% for salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets.


Asunto(s)
Albuterol/sangre , Ambroxol/sangre , Broncodilatadores/sangre , Cromatografía Líquida de Alta Presión/métodos , Expectorantes/farmacocinética , Espectrometría de Masas en Tándem/métodos , Adolescente , Adulto , Femenino , Humanos , Límite de Detección , Extracción Líquido-Líquido/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
12.
J Environ Sci (China) ; 39: 165-174, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26899655

RESUMEN

Aryl hydrocarbon receptor (AhR), a ligand-dependent nuclear receptor, is involved in a diverse spectrum of biological and toxicological effects. Due to the lack of three dimensional (3D) crystal or nuclear magnetic resonance structure, the mechanisms of these complex effects of AhR remain to be unclear. Also, commercial monoclonal antibodies (mAbs) against human AhR protein (hAhR), as alternative immunological tools, are very limited. Thus, in order to provide more tools for further studies on hAhR, we prepared two mAbs (1D6 and 4A6) against hAhR. The two newly generated mAbs specifically bound to amino acids 484-508 (located in transcription activation domain) and amino acids 201-215 (located in Per-ARNT-Sim domain) of hAhR, respectively. These epitopes were new as compared with those of commercial mAbs. The mAbs were also characterized by enzyme-linked immunosorbent assay, western blot, immunoprecipitation and indirect immunofluorescence assay in different cell lines. The results showed that the two mAbs could recognize the linearized AhRs in six different human cell lines and a rat hepatoma cell line, as well as the hAhR with native conformations. We concluded that the newly generated mAbs could be employed in AhR-based bioassays for analysis of environmental contaminants, and held great potential for further revealing the spatial structure of AhR and its biological functions in future studies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Línea Celular Tumoral , Epítopos/inmunología , Humanos , Ratones , Ratas , Receptores de Hidrocarburo de Aril/química
13.
Chemosphere ; 349: 140767, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992903

RESUMEN

Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.


Asunto(s)
Aterosclerosis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratones , Especies Reactivas de Oxígeno , Metabolómica , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Adenosina Trifosfato
14.
Artif Organs ; 37(3): 256-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23419169

RESUMEN

Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends.


Asunto(s)
Hemólisis , Hemorreología , Inyecciones/instrumentación , Agujas , Velocidad del Flujo Sanguíneo , Simulación por Computador , Diseño de Equipo , Humanos , Inyecciones/efectos adversos , Ensayo de Materiales , Modelos Cardiovasculares , Estrés Mecánico , Factores de Tiempo
15.
Structure ; 31(3): 295-308.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649707

RESUMEN

Aryl hydrocarbon receptor (AhR) is an important ligand-activated transcription factor involved in the regulation of various important physiological functions. Here, we report the cryo-EM structures of the Hsp90-AhR-p23 complex with or without bound XAP2, where the structure of the mouse AhR PAS-B domain is resolved. A highly conserved bridge motif of AhR is responsible for the interaction with the Hsp90 dimeric lumen. The ligand-free AhR PAS-B domain is attached to the Hsp90 dimer and is stabilized in the complex with bound XAP2. In addition, the DE-loop and a group of conserved pocket inner residues in the AhR PAS-B domain are found to be important for ligand binding. These results reveal the structural basis of the biological functions of AhR. Moreover, the protein purification method presented here allows the isolation of stable mouse AhR protein, which could be used to develop high-sensitivity biosensors for environmental pollutant detection.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Receptores de Hidrocarburo de Aril , Ratones , Animales , Microscopía por Crioelectrón , Receptores de Hidrocarburo de Aril/química , Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Regulación de la Expresión Génica
16.
Lancet ; 377(9781): 1938-47, 2011 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-21601270

RESUMEN

BACKGROUND: Repeated periods of stimulation of the spinal cord and training increased the ability to control movement in animal models of spinal cord injury. We hypothesised that tonic epidural spinal cord stimulation can modulate spinal circuitry in human beings into a physiological state that enables sensory input from standing and stepping movements to serve as a source of neural control to undertake these tasks. METHODS: A 23-year-old man who had paraplegia from a C7-T1 subluxation as a result of a motor vehicle accident in July 2006, presented with complete loss of clinically detectable voluntary motor function and partial preservation of sensation below the T1 cord segment. After 170 locomotor training sessions over 26 months, a 16-electrode array was surgically placed on the dura (L1-S1 cord segments) in December 2009, to allow for chronic electrical stimulation. Spinal cord stimulation was done during sessions that lasted up to 250 min. We did 29 experiments and tested several stimulation combinations and parameters with the aim of the patient achieving standing and stepping. FINDINGS: Epidural stimulation enabled the man to achieve full weight-bearing standing with assistance provided only for balance for 4·25 min. The patient achieved this standing during stimulation using parameters identified as specific for standing while providing bilateral load-bearing proprioceptive input. We also noted locomotor-like patterns when stimulation parameters were optimised for stepping. Additionally, 7 months after implantation, the patient recovered supraspinal control of some leg movements, but only during epidural stimulation. INTERPRETATION: Task-specific training with epidural stimulation might reactivate previously silent spared neural circuits or promote plasticity. These interventions could be a viable clinical approach for functional recovery after severe paralysis. FUNDING: National Institutes of Health and Christopher and Dana Reeve Foundation.


Asunto(s)
Terapia por Estimulación Eléctrica , Movimiento , Paraplejía/terapia , Postura , Médula Espinal , Soporte de Peso , Electrodos Implantados , Electromiografía , Humanos , Pierna , Región Lumbosacra , Masculino , Músculo Esquelético/fisiopatología , Paraplejía/etiología , Paraplejía/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
17.
Environ Int ; 168: 107461, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35981476

RESUMEN

Tumor cell migration is affected by the aryl hydrocarbon receptor (AhR). However, the systematic molecular mechanisms underlying AhR-mediated migration of human neuroblastoma cells are not fully understood. To address this issue, we performed an integrative analysis of mRNA and microRNA (miR) expression profiles in human neuroblastoma SK-N-SH cells treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent agonist of AhR. The cell migration was increased in a time- and concentration- dependent manner, and was blocked by AhR antagonist (CH223191). A total of 4,377 genes were differentially expressed after 24-hour-treatment with 10-10 M TCDD, of which the upregulated genes were significantly enriched in cell migration-related biological pathways. Thirty-four upregulated genes, of which 25 were targeted by 78 differentially expressed miRs, in the axon guidance pathway were experimentally confirmed, and the putative dioxin-responsive elements were present in the promoter regions of most genes (79 %) and miRs (82 %) in this pathway. Furthermore, two promigratory genes (CFL2 and NRP1) induced by TCDD was reversed by blockade of AhR. In conclusion, AhR-mediated mRNA-miR networks in the axon guidance pathway may represent a potential molecular mechanism of dioxin-induced directional migration of human neuroblastoma cells.

18.
Sci Total Environ ; 838(Pt 3): 156227, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623516

RESUMEN

Dioxins and dioxin-like compounds (DLCs) in foodstuffs are closely related to human health. As China is the largest food-consuming country, there is a potentially large demand for screening bioassays that are rapid, cost-effective and capable of determining dioxins and DLCs in foodstuffs. CBG2.8D is a reporter gene-based recombinant cell sensor that was recently developed for determining dioxin and DLCs in ambient and seafood samples. In this study, we established a bioanalytical method with this ready-to-use cell sensor for the bioanalysis of dioxins and DLCs in different types of meat samples. Twenty-nine samples from three typical types of meat (beef, pork and fish) were collected and subjected to both instrumental analysis and a CBG2.8D bioassay. The intra- and inter-lab reproducibility of the bioassay was investigated and the coefficients of variation (CVs) were lower than 25%, suggesting that the cell sensor had a good reproducibility for the meat samples. Based on the correlation equation and coefficient obtained by comparing the data from the instrumental analysis and CBG2.8D bioassay, we found that this method had better performance with pork and fish than with beef. The compliance rate was also determined by comparing the results from the instrumental analysis and there were no false results for the pork and fish samples. Lastly, a complete operation procedure was summarized as a guideline for practical application. In conclusion, the CBG2.8D cell sensor exhibits excellent stability and is capable of screening dioxins and DLCs in meat samples.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animales , Bioensayo/métodos , Bovinos , Dioxinas/análisis , Carne/análisis , Bifenilos Policlorados/análisis , Reproducibilidad de los Resultados
19.
J Hazard Mater ; 432: 128718, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338935

RESUMEN

The dioxin-like substances polyhalogenated carbazoles (PHCZs) may trigger the aryl hydrocarbon receptor (AhR) signaling pathway. Although the crosstalk between AhR and the hypoxia inducible factor-1 (HIF-1) pathways is generally believed to occur, the exact mechanisms of the HIF-1 pathway in PHCZ toxicity have not been determined. We aimed to elucidate the effect of PHCZs on the HIF-1 pathway and its involvement in the regulation of target genes of HIF-1. Herein, we employed human HepG2 cells transiently transfected with a hypoxia response element (HRE) luciferase reporter to identify PHCZs that could influence HIF-1 pathway. We found that exposure to one of the four selected PHCZs, specifically 1,3,6,8-tetrabromo-9 H-carbazole (1368-BCZ), induced a significant enhancement of the activity of HRE activity. In silico data supported 1368-BCZ-induced HIF-1α activity preferentially. Moreover, 1368-BCZ significantly upregulated the expression of HIF-1 target genes, including endothelial growth factor (VEGF) and erythropoietin. Importantly, the stimulated secretion of VEGF by 1368-BCZ promoted the angiogenesis in human umbilical vein endothelial cells. Therefore, the present experimental and computational studies provide new and direct evidence of 1368-BCZ - HIF-1 interaction, which sheds light on the HIF-mediated cardiovascular toxicity and allows a knowledge-based risk assessment of emerging pollutants.


Asunto(s)
Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Carbazoles/toxicidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipoxia , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Artif Organs ; 35(2): 145-56, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21091515

RESUMEN

Hemolysis is caused by fluid stresses in flows within hypodermic needles, blood pumps, artificial hearts, and other cardiovascular devices. Developers of cardiovascular devices may expend considerable time and effort in testing of prototypes, because there is currently insufficient understanding of how flow-induced cell damage occurs to accurately predict hemolysis. The objective of this project was to measure cell deformation in response to a range of flow conditions, and to develop a constitutive model correlating cell damage to fluid stresses. An experimental system was constructed to create Poiseuille flow under a microscope with velocities up to 4 m/s, Reynolds number to 200, and fluid stresses to 5000 dyn/cm(2). Pulsed laser illumination and a digital camera captured images of cells deformed by the flow. Equilibrium equations were developed to relate fluid stresses to cell membrane tension, and a viscoelastic membrane model was used to predict cell strain. Measurements of aspect ratio as a function of shear stress and duration of shear were used to calibrate the cell deformation model. Hemolysis prediction was incorporated with a threshold strain value for cell rupture. The new model provides an improved match to experimentally observed hemolytic stress thresholds, particularly at long exposure times, and may reduce the empiricism of hemolysis prediction.


Asunto(s)
Deformación Eritrocítica , Eritrocitos/citología , Hemólisis , Diseño de Equipo , Eritrocitos/ultraestructura , Hemorreología , Humanos , Microscopía/instrumentación , Modelos Biológicos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA