Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(8): 2834-2850, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38701348

RESUMEN

Salt stress is an environmental factor that limits plant growth and crop production. With the rapid expansion of salinized arable land worldwide, investigating the molecular mechanisms underlying the salt stress response in plants is urgently needed. Here, we report that GROWTH REGULATING FACTOR 7 (OsGRF7) promotes salt tolerance by regulating arbutin (hydroquinone-ß-D-glucopyranoside) metabolism in rice (Oryza sativa). Overexpression of OsGRF7 increased arbutin content, and exogenous arbutin application rescued the salt-sensitive phenotype of OsGRF7 knockdown and knockout plants. OsGRF7 directly promoted the expression of the arbutin biosynthesis genes URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 1 (OsUGT1) and OsUGT5, and knockout of OsUGT1 or OsUGT5 reduced rice arbutin content, salt tolerance, and grain size. Furthermore, OsGRF7 degradation through its interaction with F-BOX AND OTHER DOMAINS CONTAINING PROTEIN 13 reduced rice salinity tolerance and grain size. These findings highlight an underexplored role of OsGRF7 in modulating rice arbutin metabolism, salt stress response, and grain size, as well as its broad potential use in rice breeding.


Asunto(s)
Arbutina , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Tolerancia a la Sal , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arbutina/metabolismo , Arbutina/farmacología , Plantas Modificadas Genéticamente , Estrés Salino
2.
Phys Rev Lett ; 132(13): 138401, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613297

RESUMEN

Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.


Asunto(s)
División Celular , Humanos , Morfogénesis
3.
Plant Physiol ; 187(2): 1011-1025, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608951

RESUMEN

Understanding the molecular mechanisms underlying complex phenotypes requires systematic analyses of complicated metabolic networks and contributes to improvements in the breeding efficiency of staple cereal crops and diagnostic accuracy for human diseases. Here, we selected rice (Oryza sativa) heterosis as a complex phenotype and investigated the mechanisms of both vegetative and reproductive traits using an untargeted metabolomics strategy. Heterosis-associated analytes were identified, and the overlapping analytes were shown to underlie the association patterns for six agronomic traits. The heterosis-associated analytes of four yield components and plant height collectively contributed to yield heterosis, and the degree of contribution differed among the five traits. We performed dysregulated network analyses of the high- and low-better parent heterosis hybrids and found multiple types of metabolic pathways involved in heterosis. The metabolite levels of the significantly enriched pathways (especially those from amino acid and carbohydrate metabolism) were predictive of yield heterosis (area under the curve = 0.907 with 10 features), and the predictability of these pathway biomarkers was validated with hybrids across environments and populations. Our findings elucidate the metabolomic landscape of rice heterosis and highlight the potential application of pathway biomarkers in achieving accurate predictions of complex phenotypes.


Asunto(s)
Marcadores Genéticos , Vigor Híbrido , Metaboloma , Oryza/genética , Fenotipo , Metabolómica , Oryza/metabolismo
4.
Mol Ther ; 29(3): 1120-1137, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33130312

RESUMEN

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy. Here, we identified a novel transcript named lncRNA Gm15834, which was upregulated in the transverse aortic constriction (TAC) model in vivo and the angiotensin-II (Ang-II)-induced cardiac hypertrophy model in vitro and was regulated by nuclear factor kappa B (NF-κB). Importantly, forced expression of lncRNA Gm15834 enhanced autophagic activity of cardiomyocytes and promoted myocardial hypertrophy, whereas silencing of lncRNA Gm15834 attenuated autophagy-induced myocardial hypertrophy. Mechanistically, we found that lncRNA Gm15834 could function as an endogenous sponge RNA of microRNA (miR)-30b-3p, which was downregulated in cardiac hypertrophy. Inhibition of miR-30b-3p enhanced cardiomyocyte autophagic activity and aggravated myocardial hypertrophy, whereas overexpression of miR-30b-3p suppressed autophagy-induced myocardial hypertrophy by targeting the downstream autophagy factor of unc-51-like kinase 1 (ULK1). Moreover, inhibition of lncRNA Gm15834 by adeno-associated virus carrying short hairpin RNA (shRNA) suppressed cardiomyocyte autophagic activity, improved cardiac function, and mitigated cardiac hypertrophy. Taken together, our study identified a novel regulatory axis encompassing lncRNA Gm15834/miR-30b-3p/ULK1/autophagy in cardiac hypertrophy, which may provide a potential therapy target for cardiac hypertrophy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Cardiomegalia/terapia , Regulación de la Expresión Génica , ARN Largo no Codificante/antagonistas & inhibidores , Angiotensina II/toxicidad , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Vasoconstrictores/toxicidad
5.
Plant Physiol ; 184(1): 393-406, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32581114

RESUMEN

Plant-specific GROWTH-REGULATING FACTORs (GRFs) participate in central developmental processes, including leaf and root development; inflorescence, flower, and seed formation; senescence; and tolerance to stresses. In rice (Oryza sativa), there are 12 GRFs, but the role of the miR396-OsGRF7 regulatory module remains unknown. Here, we report that OsGRF7 shapes plant architecture via the regulation of auxin and GA metabolism in rice. OsGRF7 is mainly expressed in lamina joints, nodes, internodes, axillary buds, and young inflorescences. Overexpression of OsGRF7 causes a semidwarf and compact plant architecture with an increased culm wall thickness and narrowed leaf angles mediated by shortened cell length, altered cell arrangement, and increased parenchymal cell layers in the culm and adaxial side of the lamina joints. Knockout and knockdown lines of OsGRF7 exhibit contrasting phenotypes with severe degradation of parenchymal cells in the culm and lamina joints at maturity. Further analysis indicated that OsGRF7 binds the ACRGDA motif in the promoters of a cytochrome P450 gene and AUXIN RESPONSE FACTOR12, which are involved in the GA synthesis and auxin signaling pathways, respectively. Correspondingly, OsGRF7 alters the contents of endogenous GAs and auxins and sensitivity to exogenous phytohormones. These findings establish OsGRF7 as a crucial component in the OsmiR396-OsGRF-plant hormone regulatory network that controls rice plant architecture.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
6.
Plant Physiol ; 180(2): 1031-1045, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30890663

RESUMEN

As fundamental nutrients, amino acids are important for rice (Oryza sativa) growth and development. Here, we identified the amino acid permease 5 (OsAAP5), that regulates tiller number and grain yield in rice. The OsAAP5 promoter sequence differed between indica and japonica rice varieties. Lower expression of OsAAP5 in the young leaf blade in indica varieties than in japonica varieties was associated with more tillers in indica than in japonica Down-regulation of OsAAP5 expression in japonica using RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats led to increases in tiller number and grain yield, whereas OsAAP5 overexpression (OE) had the opposite effect. Both a protoplast amino acid uptake assay and HPLC analysis indicated that more basic (Lys, Arg) and neutral (Val, Ala) amino acids were transported and accumulated in the OE lines than in the wild type, but the opposite was observed in the RNAi lines. Furthermore, exogenous application of Lys, Arg, Val, and Ala in the OE lines substantially inhibited tiller bud elongation, but the effect was lost in the RNAi lines. Notably, concentrations of the cytokinins cis-zeatin and dihydrozeatin were much lower in the OE lines than in the wild type, whereas concentrations in the RNAi lines were higher. Thus, OsAAP5 could regulate tiller bud outgrowth by affecting cytokinin levels, and knockout of OsAAP5 could be valuable for japonica breeding programs seeking high yield and grain quality.


Asunto(s)
Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/crecimiento & desarrollo , Aminoácidos/metabolismo , Secuencia de Bases , Transporte Biológico , Membrana Celular/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Oryza/enzimología , Fenotipo , Proteínas de Plantas/genética , Haz Vascular de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Protoplastos/metabolismo
7.
Med Sci Monit ; 26: e923868, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643707

RESUMEN

BACKGROUND Growing evidence suggests that long non-coding RNAs (lncRNAs), as decoys of microRNAs (miRNAs), are involved in osteoarthritis (OA) progression, but the potential mechanism of lncRNA SNHG15 in OA remains unknown. Thus, the present study explored the molecular mechanism of SNHG15 in OA progression. MATERIAL AND METHODS OA chondrocytes were created by 20 ng/ml IL-1ß stimulation, and the experimental OA model was created by destabilization of the medial meniscus (DMM) surgery. Cartilage histomorphology was observed by safranin and fast green double dyeing. The relationships between SNHG15 and miR-7, KLF4, and miR-7 were determined by dual-luciferase assay or RNA immunoprecipitation (RIP). Immunofluorescence was used to detect the expressions of Ki67, collagen II, and Aggrecan. Moreover, SNHG15, miR-7, KLF4, MMP3, ADAMTS5, COL2A1, Aggrecan, and ß-catenin expressions were assessed by qRT-PCR or Western blot. The methylation status of SNHG15 promoter was evaluated by MS-PCR. RESULTS Underexpression of KLF4 and SHNG15 and overexpression of miR-7 were found in human OA knee cartilage tissues and IL-1ß-stimulated OA chondrocytes. SHNG15 overexpression significantly inhibited ECM degradation and promoted chondrocyte formation of OA chondrocytes. Furthermore, SNHG15 regulated KLF4 expression by sponging miR-7. Further analysis found that SNHG15 significantly inhibited b-catenin in OA chondrocytes. SNHG15 had a higher level of methylation in human OA tissues than in normal cartilage tissues. CONCLUSIONS Our results revealed that SNHG15 alleviated OA progression by regulating ECM homeostasis, which provides a promising target for OA therapy.


Asunto(s)
Osteoartritis/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Animales , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Femenino , Homeostasis , Humanos , Interleucina-1beta/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Persona de Mediana Edad , Osteoartritis/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Cultivo Primario de Células , ARN Nucleolar Pequeño/genética
8.
Plant Biotechnol J ; 17(5): 906-913, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30321482

RESUMEN

Marker-based prediction holds great promise for improving current plant and animal breeding efficiencies. However, the predictabilities of complex traits are always severely affected by negative factors, including distant relatedness, environmental discrepancies, unknown population structures, and indeterminate numbers of predictive variables. In this study, we utilised two independent F1 hybrid populations in the years 2012 and 2015 to predict rice thousand grain weight (TGW) using parental untargeted metabolite profiles with a partial least squares regression method. A stable predictive model for TGW was built based on hybrids from the population in 2012 (r = 0.75) but failed to properly predict TGW for hybrids from the population in 2015 (r = 0.27). After integrating hybrids from both populations into the training set, the TGW of hybrids could be predicted but was largely dependent on population structures. Then, core hybrids from each population were determined by principal component analysis and the TGW of hybrids in both environments were successfully predicted (r > 0.60). Moreover, adjusting the population structures and numbers of predictive analytes increased TGW predictability for hybrids in 2015 (r = 0.72). Our study demonstrates that the TGW of F1 hybrids across environments can be accurately predicted based on parental untargeted metabolite profiles with a core hybridisation strategy in rice. Metabolic biomarkers identified from early developmental stage tissues, which are grown under experimental conditions, may represent a workable approach towards the robust prediction of major agronomic traits for climate-adaptive varieties.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Metaboloma , Oryza/crecimiento & desarrollo , Biomarcadores , Grano Comestible/metabolismo , Ambiente , Hibridación Genética , Análisis de los Mínimos Cuadrados , Oryza/metabolismo , Fitomejoramiento
9.
BMC Neurol ; 19(1): 249, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31646971

RESUMEN

BACKGROUND: Cardiac myxoma is the most common benign cardiac tumor. Brain metastases or multiple cerebral aneurysms are extremely rare, especially for the case of both complications. Brain metastases are usually found at the same time or few months after the diagnosis or surgical removal of cardiac myxoma CASE PRESENTATION: We describe a case of patient, operated for a cardiac myxoma, who presented multiple central nervous system metastases associated, cerebral aneurysms and subsequent intracerebral hemorrhage CONCLUSIONS: The long-term follow-up of the patients with atrial myxoma even after complete surgical excision is recommended, especially for the patient with central nervous system manifestations before atrial myxoma excision.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Cardíacas/patología , Aneurisma Intracraneal/etiología , Mixoma/patología , Adulto , Hemorragia Cerebral/etiología , Femenino , Atrios Cardíacos/patología , Humanos
10.
J Cell Mol Med ; 22(12): 6055-6067, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30299584

RESUMEN

Cardiac hypertrophy is a compensatory response to mechanical stimuli and neurohormonal factors, ultimately progresses to heart failure. The proteins of some transient receptor potential (TRP) channels, Ca2+ -permeable nonselective cation channel, are highly expressed in cardiomyocytes, and associated with the occurrence of cardiac hypertrophy. Transient receptor potential vanilloid 3 (TRPV3) is a member of TRP, however, the functional role of TRPV3 in cardiac hypertrophy remains unclear. TRPV3 was elevated in pathological cardiac hypertrophy, but not in swimming exercise-induced physiological cardiac hypertrophy in rats. TRPV3 expression was also increased in Ang II-induced cardiomyocyte hypertrophy in vitro, which was remarkably increased by carvacrol (a nonselective TRPV channel agonist), and reduced by ruthenium red (a nonselective TRPV channel antagonist). Interestingly, we found that activated TRPV3 in Ang II-induced cardiomyocyte hypertrophy was accompanied with increasing intracellular calcium concentration, promoting calcineurin, and phosphorylated CaMKII protein expression, and enhancing NFATc3 nuclear translocation. However, blocking or knockdown of TRPV3 could inhibit the expressions of calcineurin, phosphorylated CaMKII and NFATc3 protein by Western blot. In conclusion, the activation of TRPV3 aggravated pathological cardiac hypertrophy through calcineurin/NFATc3 signalling pathway and correlated with the protein expression levels of calcineurin, phosphorylated CaMKII and NFATc3, revealing that TRPV3 might be a potential therapeutic target for cardiac hypertrophy.


Asunto(s)
Calcineurina/genética , Cardiomegalia/genética , Factores de Transcripción NFATC/genética , Canales Catiónicos TRPV/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Cimenos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Monoterpenos/administración & dosificación , Miocitos Cardíacos , Ratas , Transducción de Señal/efectos de los fármacos , Natación/fisiología
11.
Antonie Van Leeuwenhoek ; 106(6): 1127-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25294723

RESUMEN

Triacylglycerols (TAGs), synthesized in the microsomal membranes of eukaryotes, serve as a primary storage form of carbon and energy in microorganisms. For this reason, TAGs produced by organisms have great potential to become biofuels and facilitate researchers to look for alternative renewable sources of energy. The present study describes the identification and functional characterization of a type-2 diacylglycerol acyltransferase from Rhodosporidium diobovatum, designated as RdDGAT, which catalyzed the final step of TAG synthesis. A full-length cDNA clone for RdDGAT was obtained, and its biological activity was proven by being expressed in a Saccharomyces cerevisiae quadruple mutant that was defective in TAG synthesis. Enzymatic assays were performed and finally the existence of TAGs in the transformed Saccharomyces cerevisiae quadruple mutant was determined using the method of thin-layer chromatography. Substrate preference experiments revealed that RdDGAT preferred unsaturated fatty acids over saturated ones. Through further analysis, we assume that the evolution and expression characteristics of the RdDGAT gene perhaps is the result of adaption to its oligotrophic and cold living environment.


Asunto(s)
Basidiomycota/enzimología , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Secuencia de Aminoácidos , Basidiomycota/genética , Clonación Molecular , Análisis por Conglomerados , ADN Complementario , Ácidos Grasos/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Filogenia , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Especificidad por Sustrato
12.
PeerJ Comput Sci ; 10: e2079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855245

RESUMEN

Background: Automatic extraction of roads from remote sensing images can facilitate many practical applications. However, thus far, thousands of kilometers or more of roads worldwide have not been recorded, especially low-grade roads in rural areas. Moreover, rural roads have different shapes and are influenced by complex environments and other interference factors, which has led to a scarcity of dedicated low level category road datasets. Methods: To address these issues, based on convolutional neural networks (CNNs) and tranformers, this article proposes the Dual Path Information Fusion Network (DPIF-Net). In addition, given the severe lack of low-grade road datasets, we constructed the GaoFen-2 (GF-2) rural road dataset to address this challenge, which spans three regions in China and covers an area of over 2,300 km, almost entirely composed of low-grade roads. To comprehensively test the low-grade road extraction performance and generalization ability of the model, comparative experiments are carried out on the DeepGlobe, and Massachusetts regular road datasets. Results: The results show that DPIF-Net achieves the highest IoU and F1 score on three datasets compared with methods such as U-Net, SegNet, DeepLabv3+, and D-LinkNet, with notable performance on the GF-2 dataset, reaching 0.6104 and 0.7608, respectively. Furthermore, multiple validation experiments demonstrate that DPIF-Net effectively preserves improved connectivity in low-grade road extraction with a modest parameter count of 63.9 MB. The constructed low-grade road dataset and proposed methods will facilitate further research on rural roads, which holds promise for assisting governmental authorities in making informed decisions and strategies to enhance rural road infrastructure.

13.
Int J Gen Med ; 16: 1581-1587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143580

RESUMEN

Purpose: The study aims to identify the characteristics of SSR in patients with AICVD and their correlation with clinical presentations. Methods: SSR of the upper limbs, the National Institute of Health stroke scale (NIHSS), the Barthel index (BI), the Essen stroke risk score (ESRS), and imaging examinations, was evaluated in 30 healthy subjects and 66 patients with AICVD. All results were recorded and analyzed via Statistical Package for the Social Sciences (SPSS 22.0) software. t-test and Spearman rank correlation were used. Results: Compared to the control group, SSR of upper limbs in patients with AICVD showed prolonged latency, reduced amplitude, and disappeared waveform (p=0.000, p=0.015, p=0.004), No statistically significant difference was observed between the affected side and the healthy side (p=0.068, p=0.661). In the case group, the higher the abnormal rate of SSR, the more severe the neurological impairment (NIHSS and ADL scores) and the worse the long-term prognosis. Specific results are as follows: Firstly, the total abnormality rate of SSR, prolonged SSR latency were positively related to the NIHSS, also the ESRS (r=0.347, p=0.004; r=0.437, p<0.001), (r=0.371, p=0.005; r=0.433, p=0.001), the reduced amplitude was positively related to the NIHSS (r=0.341, p=0.012) while the disappeared waveform was positively related to the ESRS (r=0.299, p=0.015); Secondly, the total abnormality rate of SSR, prolonged SSR latency and reduced amplitude were negatively related to the BI (r=-0.346, p=0.004) (r=-0.426, p=0.001) (r=-0.316, p=0.020). Conclusion: There may be inhibition of sympathetic reflex activity in patients with AICVD, SSR abnormality rate in patients with AICVD may be correlated with the degree of neurological impairment and long-term prognosis.

14.
ISA Trans ; 133: 369-383, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35798589

RESUMEN

This paper proposes a selective kernel convolution deep residual network based on the channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis. First, adjacent channel attention modules are connected with the spatial attention mechanism module, then all channel features and spatial features are fused and a channel-spatial attention mechanism is constructed to form the feature enhancement module. Second, the feature enhancement module is embedded in a series model based on selective kernel convolution and deep residual network and combined with multi-layer feature fusion information. The model can more effectively extract fault features from the vibration signal, compared with traditional deep learning methods, and the fault recognition efficiency is improved. Finally, the proposed method was used to experimentally diagnose bearing and gear faults, and identification accuracies of 99.87% and 97.77%, respectively, were achieved. Compared with similar algorithms, the proposed method has higher fault identification ability, thereby demonstrating the advantages of the channel-spatial attention mechanism network. In addition, the accuracy and robustness of the model were verified.

15.
Front Public Health ; 11: 1253247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38405035

RESUMEN

Objective: The objective of this study was to explore the game relationship among enterprise, the government, and the public under the new media environment, so as to provide decision-making reference for improving enterprise green technology innovation and promoting economy high-quality development with new media participation. Methods: This study constructs a three-subject evolutionary game model of enterprise, government, and public based on multi-agent relationship analysis and evolutionary game theory. In addition, the derivation of an evolutionary equilibrium strategy and numerical simulation analysis is carried out to comprehensively explore the evolution trajectory of green technology innovation system under the new media environment. Findings: (1) The system may have four stable evolutionary strategies: (1,0,0), (0,0,1), (1,0,1), and (1,1,1). (2) The initial strategy probability of various actors would affect the system evolution speed but not the evolution result, and the authenticity of new media reports is an important factor determining the system evolution of green technology innovation. (3) Numerical simulation results show that a fair and just new media environment can effectively constrain the traditional production behavior of enterprise, actively guide the public to participate in supervision, and play an alternative role to government regulation to a certain extent. Value: This study explores the evolutionary balance strategy of green technology innovation system under the new media environment, which not only enriches relevant theories of media environment governance but also has important reference value for promoting enterprises' green technology innovation and establishing an environmental governance system jointly governed by government, enterprise, public, and media.


Asunto(s)
Conservación de los Recursos Naturales , Política Ambiental , Simulación por Computador , Desarrollo Económico , Tecnología
16.
Cell Death Dis ; 14(11): 757, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985768

RESUMEN

Aggressiveness and drug resistance are major challenges in the clinical treatment of glioblastoma (GBM). Our previously research reported a novel candidate oncogene ribosomal protein L22 like 1 (RPL22L1). The aim of this study was to elucidate the potential role and mechanism of RPL22L1 in progression and temozolomide (TMZ) resistance of GBM. Online database, tissue microarrays and clinical tissue specimens were used to evaluate the expression and clinical implication of RPL22L1 in GBM. We performed cell function assays, orthotopic and subcutaneous xenograft tumor models to evaluate the effects and molecular mechanisms of RPL22L1 on GBM. RPL22L1 expression was significantly upregulated in GBM and associated with poorer prognosis. RPL22L1 overexpression enhanced GBM cell proliferation, migration, invasion, TMZ resistance and tumorigenicity, which could be reduced by RPL22L1 knockdown. Further, we found RPL22L1 promoted mesenchymal phenotype of GBM and the impact of these effects was closely related to EGFR/STAT3 pathway. Importantly, we observed that STAT3 specific inhibitor (Stattic) significantly inhibited the malignant functions of RPL22L1, especially on TMZ resistance. RPL22L1 overexpressed increased combination drug sensitive of Stattic and TMZ both in vitro and in vivo. Moreover, Stattic effectively restored the sensitive of RPL22L1 induced TMZ resistance in vitro and in vivo. Our study identified a novel candidate oncogene RPL22L1 which promoted the GBM malignancy through STAT3 pathway. And we highlighted that Stattic combined with TMZ therapy might be an effective treatment strategy in RPL22L1 high-expressed GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Oncogenes , Resistencia a Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
17.
Acta Biomater ; 170: 519-531, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659729

RESUMEN

Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.

18.
J Mol Biol ; 434(3): 167353, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774563

RESUMEN

Early-stage human embryogenesis, such as implantation, gastrulation, and neurulation, are critical for successful pregnancy. For decades, our knowledge about these stages has been limited by the inaccessibility to such embryo specimens in vivo and the difficulty in rebuilding them in vitro. Although human embryos could be cultured in vitro beyond implantation, it remains challenging for the cultured embryos to recapitulate the continuous, coordinated morphogenesis and cytodifferentiation as seen in vivo. Stem cell-based embryo models, mainly derived from human pluripotent stem cells, are organized structures mimicking essential developmental processes in the early-stage human embryos. Despite their invaluable potentials, most embryo models are based on the self-organization of human pluripotent stem cells, which are limited in controllability, reproducibility, and developmental fidelity. Recently, the integration of bioengineered tools and stem cell biology has fueled a technological transformation towards programmable, highly complex, high-fidelity stem cell-based embryo models. Given its scientific and clinical significance, we present an overview of recent paradigm-shifting advances as well as historical perspectives regarding the past, present, and future of synthetic human embryology. Following the developmental roadmap of human embryogenesis, we critically review existing stem cell-based models for implantation, gastrulation, and neurulation, respectively. We highlight the limitations encountered by autonomous self-organization strategy and discuss the concept and application of guided cell organization as a game-changer for innovating next-generation embryo models. Future endeavors in synthetic human embryology should rationally leverage both the self-organizing power and programmable microenvironmental guidance to secure faithful reconstructions of the hierarchical orders of human embryogenesis in vitro.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Pluripotentes , Implantación del Embrión , Femenino , Humanos
19.
Bio Protoc ; 12(4): e4332, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35340288

RESUMEN

Plant hormones regulate many physiological processes that largely influence growth, differentiation, and development. Contents of phytohormones were analyzed using a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) system. This protocol describes a detailed procedure to extract and quantify indole-3-acetic acid (IAA) and gibberellin acid (GA) in rice (Oryza sativa) tissues using high-performance liquid chromatography (HPLC)-based method.

20.
J Oncol ; 2022: 5939158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052285

RESUMEN

Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with a high incidence and poor prognosis. Activation of the RAS pathway promotes progression and metastasis of osteosarcoma. RAS has been studied in many different tumors; however, the prognostic value of RAS-associated genes in OS remains unclear. On this basis, we investigated the RAS-related gene signature and explored the intrinsic biological features of OS. Methods: We obtained RNA transcriptome sequencing data and clinical information of osteosarcoma patients from the TARGET database. RAS pathway-related genes were obtained from the KEGG pathway database. Molecular subgroups and risk models were developed using consensus clustering and least absolute shrinkage and selection operator (LASSO) regression, respectively. ESTIMATE algorithm and ssGSEA analysis were used to assess the tumor microenvironment and immune penetrance between the two groups. A comprehensive review of gene ontology (GO) and KEGG analyses revealed inherent biological functional differences between the two groups. Results: The consistent clustering showed stratification of osteosarcoma patients into two subtypes based on RAS-associated genes and provided a robust prediction of prognosis. A risk model further confirmed that RAS-related genes are the best prognostic indicators for OS patients. GO analysis showed that GDP/GTP binding, focal adhesion, cytoskeletal motor activity, and cell-matrix junctions were associated with the RAS-related model group. Furthermore, RAS signaling in osteosarcoma based on KEGG analysis was significantly associated with cancer progression, with immune function and tumor microenvironment particularly affected. Conclusion: We constructed a prognostic model founded on RAS-related gene and demonstrated its predictive ability. Then, furtherly exploration of the molecular mechanisms and immune characteristics proved the role of RAS-related gene in the dysregulation in OS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA