Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37078688

RESUMEN

The critical first step in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (CRISPR-Cas) protein-mediated gene editing is recognizing a preferred protospacer adjacent motif (PAM) on target DNAs by the protein's PAM-interacting amino acids (PIAAs). Thus, accurate computational modeling of PAM recognition is useful in assisting CRISPR-Cas engineering to relax or tighten PAM requirements for subsequent applications. Here, we describe a universal computational protein design framework (UniDesign) for designing protein-nucleic acid interactions. As a proof of concept, we applied UniDesign to decode the PAM-PIAA interactions for eight Cas9 and two Cas12a proteins. We show that, given native PIAAs, the UniDesign-predicted PAMs are largely identical to the natural PAMs of all Cas proteins. In turn, given natural PAMs, the computationally redesigned PIAA residues largely recapitulated the native PIAAs (74% and 86% in terms of identity and similarity, respectively). These results demonstrate that UniDesign faithfully captures the mutual preference between natural PAMs and native PIAAs, suggesting it is a useful tool for engineering CRISPR-Cas and other nucleic acid-interacting proteins. UniDesign is open-sourced at https://github.com/tommyhuangthu/UniDesign.


Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , Edición Génica , ADN/genética
2.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513226

RESUMEN

Wild-type cytochrome P450 CYP102A1 from Bacillus megaterium is a highly efficient monooxygenase for the oxidation of long-chain fatty acids. The unique features of CYP102A1, such as high catalytic activity, expression yield, regio- and stereoselectivity, and self-sufficiency in electron transfer as a fusion protein, afford the requirements for an ideal biocatalyst. In the past three decades, remarkable progress has been made in engineering CYP102A1 for applications in drug discovery, biosynthesis, and biotechnology. The repertoire of engineered CYP102A1 variants has grown tremendously, whereas the substrate repertoire is avalanched to encompass alkanes, alkenes, aromatics, organic solvents, pharmaceuticals, drugs, and many more. In this article, we highlight the major advances in the past five years in our understanding of the structure and function of CYP102A1 and the methodologies used to engineer CYP102A1 for novel applications. The objective is to provide a succinct review of the latest developments with reference to the body of CYP102A1-related literature.


Asunto(s)
Bacillus megaterium , NADPH-Ferrihemoproteína Reductasa , NADPH-Ferrihemoproteína Reductasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Transporte de Electrón , Proteínas Bacterianas/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo
3.
J Cell Mol Med ; 24(7): 4261-4274, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32126159

RESUMEN

Matrix metalloproteinase-9 (MMP-9), or gelatinase B, has been hypothesized to be involved in the progression of atherosclerosis. In the arterial wall, accumulated macrophages secrete considerable amounts of MMP-9 but its pathophysiological functions in atherosclerosis have not been fully elucidated. To examine the hypothesis that macrophage-derived MMP-9 may affect atherosclerosis, we created MMP-9 transgenic (Tg) rabbits to overexpress the rabbit MMP-9 gene under the control of the scavenger receptor A enhancer/promoter and examined their susceptibility to cholesterol diet-induced atherosclerosis. Tg rabbits along with non-Tg rabbits were fed a cholesterol diet for 16 and 28 weeks, and their aortic and coronary atherosclerosis was compared. Gross aortic lesion areas were significantly increased in female Tg rabbits at 28 weeks; however, pathological examination revealed that all the lesions of Tg rabbits fed a cholesterol diet for either 16 or 28 weeks were characterized by increased monocyte/macrophage accumulation and prominent lipid core formation compared with those of non-Tg rabbits. Macrophages isolated from Tg rabbits exhibited higher infiltrative activity towards a chemoattractant, MCP-1 in vitro and augmented capability of hydrolysing extracellular matrix in granulomatous tissue. Surprisingly, the lesions of Tg rabbits showed more advanced lesions with remarkable calcification in both aortas and coronary arteries. In conclusion, macrophage-derived MMP-9 facilitates the infiltration of monocyte/macrophages into the lesions thereby enhancing the progression of atherosclerosis. Increased accumulation of lesional macrophages may promote vascular calcification.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Metaloproteinasa 9 de la Matriz/genética , Calcificación Vascular/genética , Animales , Animales Modificados Genéticamente/genética , Aorta/efectos de los fármacos , Aorta/crecimiento & desarrollo , Aorta/patología , Colesterol en la Dieta/efectos adversos , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Conejos , Calcificación Vascular/patología
4.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718134

RESUMEN

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Asunto(s)
Prótesis Vascular , Colágeno , Células Madre Pluripotentes Inducidas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Animales , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Células Madre Pluripotentes Inducidas/metabolismo , Colágeno/metabolismo , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Aneurisma de la Aorta Torácica/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratas Desnudas , Modelos Animales de Enfermedad , Ratas , Bioingeniería , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Edición Génica , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patología , Masculino
5.
Pharmaceutics ; 14(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36015196

RESUMEN

Atherosclerosis progression is driven by an imbalance of cholesterol and unresolved local inflammation in the arteries. The administration of recombinant apolipoprotein A-I (ApoA-I)-based high-density lipoprotein (HDL) nanoparticles has been used to reduce the size of atheroma and rescue inflammatory response in clinical studies. Because of the difficulty in producing large quantities of recombinant ApoA-I, here, we describe the preparation of phospholipid-based, ApoA-I-free micelles that structurally and functionally resemble HDL nanoparticles. Micelles were prepared using various phosphatidylcholine (PC) lipids combined with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[azido(polyethylene glycol)-2000] (DSPE-PEG2k) to form nanoparticles of 15-30 nm in diameter. The impacts of PC composition and PEGylation on the anti-inflammatory activity, cholesterol efflux capacity, and cholesterol crystal dissolution potential of micelles were investigated in vitro. The effects of micelle composition on pharmacokinetics and cholesterol mobilization ability were evaluated in vivo in Sprague Dawley rats. The study shows that the composition of HDL-mimicking micelles impacts their overall atheroprotective properties and supports further investigation of micelles as a therapeutic for the treatment of atherosclerosis.

6.
Antioxid Redox Signal ; 34(9): 736-749, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32390459

RESUMEN

Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.


Asunto(s)
Tejido Adiposo/metabolismo , Aterosclerosis/metabolismo , Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Aterosclerosis/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión/genética , Hipertensión/patología , Células Musculares/metabolismo , Células Musculares/patología , Músculo Liso Vascular/patología , Comunicación Paracrina/genética
7.
Biol Reprod ; 83(2): 177-84, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20410454

RESUMEN

Tetraploid (4N) complementation assay is regard as the most stringent characterization test for the pluripotency of embryonic stem (ES) cells. The technology can generate mice fully derived from the injected ES cell (ES-4N) with 4N placentas. However, it remains a very inefficient procedure owing to a lack of information on the optimal conditions for ES incorporation into the 4N embryos. In the present study, we injected ES cells from embryos of natural fertilization (fES) and somatic cell nuclear transfer (ntES) into 4N embryos at various stages of development to determine the optimal stage of ES cells integration by comparing the efficiency of full-term ES-4N mouse generation. Our results demonstrate that fES/ntES cells can be incorporated into 4N embryos at 2-cell, 4-cell and blastocyst stages and full-term mice can be generated. Interestingly, ntES cells injected into the 4-cell group resulted in the lowest efficiency (5.6%) compared to the 2-cell (13.8%, P > 0.05) and blastocyst (16.7%, P < 0.05) stages. Because 4N embryos start to form compacted morulae at the 4-cell stage, we investigated whether the lower efficiency at this stage was due to early compaction by injecting ntES cells into artificially de-compacted embryos treated with calcium free medium. Although the treatment changed the embryonic morphology, it did not increase the efficiency of ES-4N mice generation. Immunochemistry of the cytoskeleton displayed microtubule and microfilament polarization at the late 4-cell stage in 4N embryos, which suggests that de-compaction treatment cannot reverse the polarization process. Taken together, we show here that a wide developmental range of 4N embryos can be used for 4N complementation and embryo polarization and compaction may restrict incorporation of ES cells into 4N embryos.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Embrionarias/fisiología , Poliploidía , Animales , Blastocisto , Diploidia , Transferencia de Embrión , Células Madre Embrionarias/trasplante , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Transferencia Nuclear , Células Madre Pluripotentes/fisiología , Células Madre Pluripotentes/trasplante , Seudoembarazo , Quimera por Trasplante
8.
Front Pharmacol ; 11: 513031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390931

RESUMEN

High-density lipoproteins (HDLs) are unique in that they play an important role in the reverse cholesterol transport process. However, reconstituted HDL (rHDL) infusions have demonstrated limited beneficial effect in clinical practice. This is perhaps a consequence of the limited cholesterol efflux abilities of atheroma macrophages due to decreased expression of cholesterol transporters in advanced atheromas and following rHDL infusion treatment. Thus, we propose that a combination therapy of rHDL and a liver X receptor (LXR) agonist could maximize the therapeutic benefit of rHDL by upregulating ATP-binding cassette transporters A-1 (ABCA1) and ATP-binding cassette transporter G-1 (ABCG1), and enhancing cholesterol efflux to rHDL. In macrophages, rHDL downregulated the expression of ABCA1/G1 in a dose- and rHDL composition-dependent manner. Although LXR agonist, T0901317 (T1317), upregulated the expression of ABCA1 and ABCG1, the drug itself did not have any effect on cholesterol efflux (6.6 ± 0.5%) while the combination of rHDL and T1317 exhibited enhanced cholesterol efflux from [3H]-cholesterol loaded J774A.1 macrophages (23.3 ± 1.3%). Treatment with rHDL + T1317 significantly reduced the area of aortic plaque in ApoE-/- mice compared to PBS treated control animals (24.16 ± 1.42% vs. 31.59 ± 1.93%, p < 0.001), while neither rHDL nor T1317 treatment alone had a significant effect. Together, we show that rHDL paired with an LXR agonist can induce a synergetic effect in reducing atheroma burden. This synergy could lead to lower overall effective dose for both drugs, potentially overcoming the existing barriers in clinical development and renewing pharmaceutical interest in these two drug classes.

9.
Cardiovasc Res ; 76(2): 269-79, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17678635

RESUMEN

OBJECTIVES: Peroxisome proliferator-activated receptors (PPAR) alpha and beta/delta are essential transcriptional regulators of fatty acid oxidation in the heart. However, little is known about the roles of PPARgamma in the heart. The present study is to investigate in vivo role(s) of PPARgamma in the heart. METHODS: A Cre-loxP mediated cardiomyocyte-restricted PPARgamma knockout line was investigated. In these mice, exon 1 and 2 of PPARgamma were targeted to eliminate PPARgamma from cardiomyocytes. RESULTS: PPARgamma null mice exhibited pathological changes around 3 months of age, featuring progressive cardiac hypertrophy with mitochondrial oxidative damage. Most mice died from dilated cardiomyopathy. Cardiac expression of Sod2 (encoding manganese superoxide dismutase; MnSOD), a mitochondrial antioxidant enzyme was downregulated both in transcript and protein levels in cardiac samples in PPARgamma knockout mice independent of pathological changes. Promoter analyses revealed that Sod2 is a target gene of PPARgamma. Consequently, myocardial superoxide content in PPARgamma knockout mice was increased, leading to extensive oxidative damage. Treatment with a SOD mimetic compound, MnTBAP, prevented superoxide-induced cardiac pathological changes in PPARgamma knockout mice. CONCLUSIONS: The present study demonstrates that PPARgamma is critical to myocardial redox homeostasis. These findings should provide new insights into understanding the roles of PPARgamma in the heart.


Asunto(s)
Miocitos Cardíacos/metabolismo , Estrés Oxidativo , PPAR gamma/fisiología , Animales , Cardiomegalia/etiología , Insuficiencia Cardíaca/etiología , Metaloporfirinas/farmacología , Ratones , FN-kappa B/fisiología , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
10.
Front Immunol ; 9: 429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593714

RESUMEN

Using the CRISPR/Cas9 gene-editing technology, we recently produced a number of rabbits with mutations in immune function genes, including FOXN1, PRKDC, RAG1, RAG2, and IL2RG. Seven founder knockout rabbits (F0) and three male IL2RG null (-/y) F1 animals demonstrated severe combined immunodeficiency (SCID), characterized by absence or pronounced hypoplasia of the thymus and splenic white pulp, and absence of immature and mature T and B-lymphocytes in peripheral blood. Complete blood count analysis showed severe leukopenia and lymphocytopenia accompanied by severe neutrophilia. Without prophylactic antibiotics, the SCID rabbits universally succumbed to lung infections following weaning. Pathology examination revealed severe heterophilic bronchopneumonia caused by Bordetella bronchiseptica in several animals, but a consistent feature of lung lesions in all animals was a severe interstitial pneumonia caused by Pneumocystis oryctolagi, as confirmed by histological examination and PCR analysis of Pneumocystis genes. The results of this study suggest that these SCID rabbits could serve as a useful model for human SCID to investigate the disease pathogenesis and the development of gene and drug therapies.


Asunto(s)
Linfocitos B/fisiología , Infecciones por Bordetella/genética , Bordetella bronchiseptica/fisiología , Subunidad gamma Común de Receptores de Interleucina/genética , Pulmón/patología , Neumonía por Pneumocystis/microbiología , Inmunodeficiencia Combinada Grave/microbiología , Linfocitos T/fisiología , Animales , Animales Modificados Genéticamente , Infecciones por Bordetella/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Inactivación de Genes , Humanos , Trastornos Leucocíticos/congénito , Trastornos Leucocíticos/genética , Pulmón/microbiología , Pulmón/fisiología , Linfopenia/genética , Masculino , Neumonía por Pneumocystis/genética , Conejos , Inmunodeficiencia Combinada Grave/genética
11.
Sci Rep ; 7(1): 12202, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939872

RESUMEN

Immunodeficient mice have been used predominantly in biomedical research. Realizing that large animal species may have an enhanced ability to predict clinical outcome relative to mice, we worked to develop immunodeficient rabbits by CRISPR/Cas9. We first demonstrated that multiplex embryo transfer efficiently produced multiple lines of single-gene mutant (SGM) founders. Embryos microinjected with single sgRNA targeting FOXN1, RAG2, IL2RG or PRKDC were pooled for embryo transfer. As few as three recipients were used to produce twenty SGM founders for four genes. We then demonstrated the powerful multiplex targeting capacity of CRISPR/Cas9. First, two genes on the same chromosome were targeted simultaneously, resulting in three RAG1/RAG2 double-gene mutant (DGM) founders. Next we microinjected forty-five embryos each with five sgRNAs targeting FOXN1, RAG1, RAG2, IL2RG and PRKDC, and transferred them to two recipients. Five founders were produced: one SGM, two DGM, one triple-gene mutant and one quadruple-gene mutant. The present work demonstrates that multiplex embryo transfer and multiplex gene targeting can be used to quickly and efficiently generate mutant rabbit founders. Four lines of SGM (e.g. FOXN1, RAG2, IL2RG, and PRKDC) immunodeficient rabbits, as well as multigenic mutant immunodeficient rabbits have been produced. These animals may prove useful for biomedical research.


Asunto(s)
Animales Modificados Genéticamente/inmunología , Transferencia de Embrión/métodos , Marcación de Gen/métodos , Ingeniería Genética/métodos , Conejos/inmunología , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas/genética , Femenino , Masculino , Microinyecciones/métodos , Modelos Animales , Conejos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA