Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(27): e202406750, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651747

RESUMEN

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH)2 nanosheet shell (Ni/Ni(OH)2). In situ Raman spectroscopy reveals Ni and Ni(OH)2 are interconvertible according to the applied potential, facilitating the cascade nitrate reduction synergistically. Consequently, it attains superior electrocatalytic nitrate reduction performance with an ammonia FE of 98.50 % and a current density of 0.934 A cm-2 at -0.476 V versus reversible hydrogen electrode, and exhibits an average ammonia yield rate of 84.74 mg h-1 cm-2 during the 102-hour stability test, which is highly superior to the reported catalysts tested under similar conditions. Density functional theory calculations corroborate the synergistic effect of Ni and Ni(OH)2 in the tandem reaction of nitrate reduction. Moreover, the Ni/Ni(OH)2 catalyst also possesses good capability for methanol oxidation and thus is used to establish a system coupling with nitrate reduction.

2.
Heliyon ; 10(3): e24676, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314290

RESUMEN

Enterprises are facing the superimposed challenges of digitalization and greening. The shift from reactive green technology innovation (RGT) to proactive green technology innovation (PGT) has special significance for sustainable economic development. Which strategies will companies choose? Can digital transformation (DT) motivate companies to transform their green innovation strategies? Enterprises' green innovation strategy choices must be explained with regard to digitalization. The purpose of this paper is to reveal how digitalization affects the choice of green innovation strategies and to provide a realistic basis for the sustainable development of heavily polluting enterprises. We formulated a "DT-capability-strategy" theoretical framework incorporating external constraints and internal attitudes to empirically test the microdata of 505 heavily polluting enterprises. The results show that: (1) DT can shift the heavily polluting enterprises' green innovation strategies from RGT to PGT. Endogenous tests and robustness tests support this conclusion. (2) A mechanism test shows that environmental regulations cannot significantly regulate a green innovation strategy. Only a company's capabilities and attitudes can influence PGT but their effects on RGT are not statistically significant. (3) The influence of DT on green innovation strategies shows multi-dimensional heterogeneity in the digital infrastructure, scale, and innovation level of the enterprise. The conclusions provide implications for enterprises to integrate their digital and green behaviors.

3.
Nanoscale ; 16(16): 7786-7824, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568434

RESUMEN

Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.


Asunto(s)
Materiales Biomiméticos , Nanoestructuras , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Materiales Biomiméticos/química , Materiales Biomiméticos/uso terapéutico , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Catálisis , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Microambiente Tumoral/efectos de los fármacos , Biomimética
4.
Nat Commun ; 15(1): 1116, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321072

RESUMEN

Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.6 N/m. By further constructing a nanoscale rough configuration of the polyurethane (RPU), the binding strength of Au-RPU device increases to 1243.4 N/m, which is 100 and 4 times higher than that of conventional polydimethylsiloxane and styrene-ethylene-butylene-styrene-based devices, respectively. The stretchable Au-RPU device can remain good electrical conductivity after 1022 frictions at 130 kPa pressure, and reliably record high-fidelity electrophysiological signals. Furthermore, an anti-friction pressure sensor array is constructed based on Au-RPU interconnect wires, demonstrating a superior mechanical durability for concentrated large pressure acquisition. This chemical modification-free approach of interfacial strengthening for chemically inert metal-based stretchable electronics is promising for three-dimensional integration and on-chip interconnection.

5.
ACS Appl Mater Interfaces ; 15(51): 59454-59462, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102993

RESUMEN

Atomically dispersed single-atom catalysts are intriguing catalysts in the field of electrocatalysis for nearly 100% exploitation of metal atoms. However, they are still far from practical usage due to the scaling relationship limit and metal loading limit. Generation of a diatomic complex would offer superior catalytic performance through the cooperation of two neighboring atoms as active sites. Herein, Fe/Co dual atomic sites embedded in a tube-on-plate hollow structure are designed and fabricated for an efficient electrochemical oxygen reduction reaction (ORR). The unique structure composed of ultrathin nanotube building blocks dramatically maximizes the surface area for copious active site exposure. Thanks to the synergetic interaction between Fe/Co pairs, the obtained FeCo/NC exhibits outstanding ORR activity and stability in alkaline media. Furthermore, density functional theory calculations have revealed that the remarkable activity is attributed to the electron-deficient Fe sites in FeCoN6. This work may pave the way for the innovative design of highly dispersed dual-site catalysts for broader applications in the realm of electrochemical catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA