Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(26): e2311126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221692

RESUMEN

Titanium disulfide (TiS2) is a promising anode material for sodium-ion batteries due to its high theoretical capacity, but it suffers from severe volume variation and shuttle effect of the intermediate polysulfides. To overcome the drawbacks, herein the successful fabrication of TiS2@N,S-codoped C (denoted as TiS2@NSC) through a chemical vapor reaction between Ti-based metal-organic framework (NH2-MIL-125) and carbon disulfide (CS2) is demonstrated. The C─N bonds enhance the electronic/ionic conductivity of the TiS2@NSC electrode, while the C─S bonds provide extra sodium storage capacity, and both polar bonds synergistically suppress the shuttle effect of polysulfides. Consequently, the TiS2@NSC electrode demonstrates outstanding cycling stability and rate performance, delivering reversible capacities of 418/392 mAh g-1 after 1000 cycles at 2/5 A g-1. Ex situ X-ray photoelectron spectroscopy and transmission electron microscope analyses reveal that TiS2 undergoes an intercalation-conversion ion storage mechanism with the generation of metallic Ti in a deeper sodiation state, and the pristine hexagonal TiS2 is electrochemically transformed into cubic rock-salt TiS2 as a reversible phase with enhanced reaction kinetics upon sodiation/desodiation cycling. The strategy to encapsulate TiS2 in N,S-codoped porous carbon matrices efficiently realizes superior conductivity and physical/chemical confinement of the soluble polysulfides, which can be generally applied for the rational design of advanced electrodes.

2.
Phys Rev Lett ; 132(17): 176201, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728717

RESUMEN

Nanoprotrusion (NP) on metal surface and its inevitable contamination layer under high electric field is often considered as the primary precursor that leads to vacuum breakdown, which plays an extremely detrimental effect for high energy physics equipment and many other devices. Yet, the NP growth has never been experimentally observed. Here, we conduct field emission (FE) measurements along with in situ transmission electron microscopy (TEM) imaging of an amorphous-carbon (a-C) coated tungsten nanotip at various nanoscale vacuum gap distances. We find that under certain conditions, the FE current-voltage (I-V) curves switch abruptly into an enhanced-current state, implying the growth of an NP. We then run field emission simulations, demonstrating that the temporary enhanced-current I-V is perfectly consistent with the hypothesis that a NP has grown at the apex of the tip. This hypothesis is also confirmed by the repeatable in situ observation of such a nanoprotrusion and its continued growth during successive FE measurements in TEM. We tentatively attribute this phenomenon to field-induced biased diffusion of surface a-C atoms, after performing a finite element analysis that excludes the alternative possibility of field-induced plastic deformation.

3.
Nanotechnology ; 35(37)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38834034

RESUMEN

We investigate the effects of oxygen vacancies on the ferroelectric behavior of Al:HfO2films annealed in O2and N2atmosphere. X-ray photoelectron spectroscopy results showed that the O/Hf atomic ratio was 1.88 for N2-annealed samples and 1.96 for O2-annealed samples, implying a neutralization of oxygen vacancies during O2atmosphere annealing. The O2-annealed films exhibited an increasing remanent polarization from 23µC cm-2to 28µC cm-2after 104cycles, with a negligible leakage current density of ∼2µA cm-2, while the remanent polarization decreased from 29µC cm-2to 20µC cm-2after cycling in the N2-annealed films, with its severe leakage current density decreasing from ∼1200µA cm-2to ∼300µA cm-2.A phase transition from the metastable tetragonal (t) phase to the low-temperature stable orthorhombic (o) phase and monoclinic (m) phase was observed during annealing. As a result of the fierce· competition between the t-to-o transition and the t-to-m transition, clear grain boundaries of several ruleless atomic layers were formed in the N2-annealed samples. On the other hand, the transition from the t-phase to the low-temperature stable phase was found to be hindered by the neutralization of oxygen vacancies, with almost continuous grain boundaries observed. The results elucidate the phase transformation caused by oxygen vacancies in the Al:HfO2films, which may be helpful for the preparation of HfO2-based films with excellent ferroelectricity.

4.
Phys Chem Chem Phys ; 26(2): 1406-1427, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38112095

RESUMEN

First-principles calculations were performed to analyze the atomic structures and electrochemical energy storage properties of novel MoS2⊥boridene heterostructures by anchoring MoS2 nanoflakes on Mo4/3B2 and Mo4/3B2O2 monolayers. Both thermodynamic and thermal stabilities of each heterostructure were thoroughly evaluated from the obtained binding energies and through first-principles molecular dynamics simulations at room temperature, confirming the high formability of the heterostructures. The electrochemical properties of MoS2⊥Mo4/3B2 and MoS2⊥Mo4/3B2O2 heterostructures were investigated for their potential use as anodes for alkaline metal ion batteries (Li+, Na+ and K+). It was revealed that Li+ and Na+ can form multiple stable full adsorption layers on both heterostructures, while K+ forms only a single full adsorption layer. The presence of a negative electron cloud (NEC) contributes to the stabilization of a multi-layer adsorption mechanism. For all investigated alkaline metal ions, the predicted ion diffusion dynamics are relatively sluggish for the adsorbates in the first full adsorption layer on MoS2⊥boridene heterostructures due the relatively large migration energies (>0.50 eV), compared to those of second or third full adsorption layers (<0.30 eV). MoS2⊥Mo4/3B2O2 exhibited higher onset and mean open circuit voltages as anodes for alkaline metal-ion batteries than MoS2⊥Mo4/3B2 hybrids because of enhanced interactions between the adsorbate and the Mo4/3B2O2 monolayer with the presence of O-terminations. Tailoring the size and horizontal spacing between two neighboring MoS2 nano-flakes in heterostructures led to high theoretical capacities for LIBs (531 mA h g-1), SIBs (300 mA h g-1) and PIBs (131 mA h g-1) in the current study.

5.
Biomimetics (Basel) ; 9(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38921248

RESUMEN

Public transportation scheduling aims to optimize the allocation of resources, enhance efficiency, and increase passenger satisfaction, all of which are crucial for building a sustainable urban transportation system. As a complement to public transportation, bike-sharing systems provide users with a solution for the last mile of travel, compensating for the lack of flexibility in public transportation and helping to improve its utilization rate. Due to the characteristics of shared bikes, including peak usage periods in the morning and evening and significant demand fluctuations across different areas, optimizing shared bike dispatch can better meet user needs, reduce vehicle vacancy rates, and increase operating revenue. To address this issue, this article proposes a comprehensive decision-making approach for spatiotemporal demand prediction and bike dispatch optimization. For demand prediction, we design a T-GCN (Temporal Graph Convolutional Network)-based bike demand prediction model. In terms of dispatch optimization, we consider factors such as dispatch capacity, distance restrictions, and dispatch costs, and design an optimization solution based on genetic algorithms. Finally, we validate the approach using shared bike operating data and show that the T-GCN can effectively predict the short-term demand for shared bikes. Meanwhile, the optimization model based on genetic algorithms provides a complete dispatch solution, verifying the model's effectiveness. The shared bike dispatch approach proposed in this paper combines demand prediction with resource scheduling. This scheme can also be extended to other transportation scheduling problems with uncertain demand, such as store replenishment delivery and intercity inventory dispatch.

6.
ACS Appl Mater Interfaces ; 16(8): 10316-10324, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38381062

RESUMEN

Given the requirements for power and dimension scaling, modulating channel transport properties using high gate bias is unfavorable due to the introduction of severe leakages and large power dissipation. Hence, this work presents an ultrathin phototransistor with chemical-vapor-deposition-grown monolayer MoS2 as the channel and a 10.2 nm thick Al:HfO2 ferroelectric film as the dielectric. The proposed device is meticulously modulated utilizing an Al:HfO2 nanofilm, which passivates traps and suppresses charge Coulomb scattering with Al doping, efficiently improving carrier transport and inhibiting leakage current. Furthermore, a bipolar pulses excitable polarization method is developed to induce a nonvolatile electrostatic field. The MoS2 channel is fully depleted by the switchable and stable floating gate originating from remanent polarization, leading to a high detectivity of 2.05 × 1011 Jones per nanometer of gating layer (Jones nm-1) and photocurrent on/off ratio >104 nm-1, which are superior to the state-of-the-art phototransistors based on two-dimensional (2D) materials and ferroelectrics. The proposed polarizable nonvolatile ferroelectric gating in a monolayer MoS2 phototransistor promises a potential route toward ultrasensitive photodetectors with low power consumption that boast of high levels of integration.

7.
Nanoscale ; 16(15): 7645-7659, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38529611

RESUMEN

The presence of strong anharmonic effects in surface functionalized MXenes greatly challenges the use of harmonic lattice dynamics calculations to predict their phonon spectra and lattice thermal conductivity at finite temperatures. Herein, we demonstrate the workflow for training and validating machine learning potentials in terms of moment tensor potential (MTP) for MXenes including Mo2TiC2, Mo2TiC2O2, Mo2TiC2F2 and Janus-Mo2TiC2OF monolayers. Then, the MTPs of MXenes are successfully combined with the harmonic lattice dynamics calculations to obtain the temperature renormalized phonon spectra, three-phonon scattering rates, phonon relaxation times and lattice thermal conductivity at finite temperatures. Furthermore, combining MTPs with classic molecular dynamics simulations at finite temperatures directly enables the calculation of phonon quasi-particle spectral energy density with a full inclusion of all anharmonic effects in MXenes. Our current results indicate that anharmonic effects are found to be relatively weak in Mo2TiC2 and Mo2TiC2O2 monolayers, whereas the phonon quasi-particle spectral energy densities largely resemble those of harmonic or renormalized lattice dynamics calculations. Significant broadening of spectral energy density at finite temperature is predicted for Mo2TiC2F2 and Janus-Mo2TiC2OF monolayers, implying strong anharmonic effects in those MXenes. Our work paves a new way for fast and reliable calculation of the phonon scattering process and lattice thermal conductivity of MXenes within MTPs trained from first-principles molecular dynamics simulations in the future.

8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 324-330, 2024 Mar 15.
Artículo en Zh | MEDLINE | ID: mdl-38500426

RESUMEN

Objective: To compare the effectiveness between unilateral laminotomy and bilateral decompression (ULBD) with unilateral biportal endoscopy (UBE) and uniportal interlaminar endoscopy (UIE) in the treatment of lumbar spinal stenosis. Methods: A clinical data of 52 patients with lumbar spinal stenosis, who met the selection criteria and treated with ULBD between March 2021 and November 2022, was retrospectively analyzed. The patients were allocated into UBE group (23 cases) and UIE group (29 cases) according to the surgical methods. There was no significant difference ( P>0.05) in age, gender, body mass index, surgical segment, type of lumbar stenosis, and preoperative visual analogue scale (VAS) score of low back pain, VAS score of leg pain, Oswestry disability index (ODI), disc height, and dural sac area between the two groups. Perioperative indexes (incision length, operation time, hospital stay, and surgical complications), clinical indicators (VAS score of low back pain, VAS score of leg pain, and ODI before operation and at 3 days, 1 month, 6 months, and 12 months after operation), and imaging indicators (disc height and dural sac area before operation and at 1, 12 months after operation, and dural sac expansion area) were recorded and compared between the two group. Results: All operations in both groups were successfully completed. Compared with the UIE group, the UBE group had shorter operation time and longer incision length, with significant differences ( P<0.05). But there was no significant difference in hospital stay and incidence of complications between the two groups ( P>0.05). All patients were followed up 12-20 months (mean, 14 months). The VAS scores of low back pain and leg pain and ODI after operation significantly improved when compared with preoperative values ( P<0.05), and there was no significant difference in the above indicators between different time points after operation ( P>0.05). There was no significant difference between the two groups at different time points ( P>0.05). Imaging examination showed that there was no significant difference in disc height between the two groups at different time points after operation ( P>0.05). However, the dural sac area and dural sac expansion area were significantly larger in the UBE group than in the UIE group ( P<0.05). Conclusion: ULBD with UBE and UIE can achieve satisfactory effectiveness in the treatment of lumbar spinal stenosis. But the former has more thorough decompression and better dural sac expansion than the latter.


Asunto(s)
Dolor de la Región Lumbar , Estenosis Espinal , Humanos , Descompresión Quirúrgica , Estudios Retrospectivos , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/cirugía , Estenosis Espinal/cirugía , Vértebras Lumbares/cirugía , Endoscopía , Resultado del Tratamiento
9.
ACS Appl Mater Interfaces ; 16(32): 42153-42163, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39091198

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are poised to play a pivotal part in meeting the growing demands for energy storage and powering portable electronics for their superior security, affordability, and environmentally friendly characteristics. However, the detrimental side reactions occurring at the zinc anode and the dendrite caused by uneven zinc plating/stripping have greatly compromised the cycling life of AZIBs, thereby impeding their practical prospects. In this study, the interfacial comodulation strategy was employed by combining the "electrostatic shielding" effect of cations with the characteristic adsorption of anions. Two molar ZnSO4 served as the matrix, and sodium hydroxyethyl sulfonate (SHES) was selected as a low-cost, nontoxic additive. Experimental results confirm that SHES and zinc anode exhibit robust interactions that lead to the formation of an electrostatic shield and a dynamic adsorption layer at the interface, thereby suppressing hydrogen evolution and corrosion. The combined "electrostatic shielding" effect of sodium ions and the robust characteristic adsorption of hydroxyethyl sulfonate anions serve to guide the directed three-dimensional (3D) diffusion of Zn2+, facilitating rapid, stable, and uniform deposition of zinc. Due to these effects, incorporating 0.2 M SHES as an additive extends the cycle life beyond 3600 h and enables a highly reversible process of deposition and stripping in symmetric cells. Additionally, the Zn-Cu half-cell exhibits reliable cycling for over 1400 cycles, achieving an average Coulombic efficiency of 99.6%. Moreover, the introduction of this additive substantially enhances the performance of Zn-MnO2 and Zn-NH4V4O10 full cells. This study demonstrates the practical feasibility of achieving anodes with high reversibility in AZIBs through the implementation of a strategy that involves anion adsorption at the interface, which holds paramount significance for the practical application of AZIBs.

10.
ACS Appl Mater Interfaces ; 16(10): 12544-12553, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38440797

RESUMEN

Amino acids are considered effective additives for regulating the electric double layer (EDL) in zinc-ion battery (ZIB) electrolytes. In comparison to their polar counterparts, nonpolar amino acids have received less attention in research. We demonstrated that isoleucine (ILE), benefiting from its nonpolar alkyl chain, emerges as a highly suitable electrolyte additive for aqueous ZIBs. ILE molecules preferentially adsorb onto the anode surface of zinc metal, subsequently creating a locally hydrophobic EDL facilitated by the alkyl chain. On one hand, this enhances the thermodynamic stability at the anode, while on the other hand, it accelerates the desolvation process of zinc ions, thereby improving the kinetics. Benefiting from the unique properties of ILE molecules, Cu//Zn cells with the ILE additive ultimately achieved an extended cycle life of 2600 cycles with an average coulombic efficiency of 99.695%, significantly outperforming other amino acid additives reported in the literature.

11.
Adv Mater ; 36(24): e2312300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552255

RESUMEN

O3-type layered transition metal cathodes are promising energy storage materials due to their sufficient sodium reservoir. However, sluggish sodium ions kinetics and large voltage hysteresis, which are generally associated with Na+ diffusion properties and electrochemical phase transition reversibility, drastically minimize energy density, reduce energy efficiency, and hinder further commercialization of sodium-ion batteries (SIBs). Here, this work proposes a high-entropy tailoring strategy through manipulating the electronic local environment within transition metal slabs to circumvent these issues. Experimental analysis combined with theoretical calculations verify that high-entropy metal ion mixing contributes to the improved reversibility of redox reaction and O3-P3-O3 phase transition behaviors as well as the enhanced Na+ diffusivity. Consequently, the designed O3-Na0.9Ni0.2Fe0.2Co0.2Mn0.2Ti0.15Cu0.05O2 material with high-entropy characteristic could display a negligible voltage hysteresis (<0.09 V), impressive rate capability (98.6 mAh g-1 at 10 C) and long-term cycling stability (79.4% capacity retention over 2000 cycles at 5 C). This work provides insightful guidance in mitigating the voltage hysteresis and facilitating Na+ diffusion of layered oxide cathode materials to realize high-rate and high-energy SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA