Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1474(1): 70-4, 2000 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-10699492

RESUMEN

In this paper, we extend our previous observation on the mobilization of the ribose moiety from a purine nucleoside to a pyrimidine base, with subsequent pyrimidine nucleotides formation (Cappiello et al., Biochim. Biophys. Acta 1425 (1998) 273-281). The data show that, at least in vitro, also the reverse process is possible. In rat brain extracts, the activated ribose, stemming from uridine as ribose 1-phosphate, can be used to salvage adenine and hypoxanthine to their respective nucleotides. Since the salvage of purine bases is a 5-phosphoribosyl 1-pyrophosphate-dependent process, catalyzed by adenine phosphoribosyltransferase and hypoxanthine guanine phosphoribosyltransferase, our results imply that Rib-1P must be transformed into 5-phosphoribosyl 1-pyrophosphate, via the successive action of phosphopentomutase and 5-phosphoribosyl 1-pyrophosphate synthetase; and,in fact, no adenosine could be found as an intermediate when rat brain extracts were incubated with adenine, Rib-1P and ATP, showing that adenine salvage does not imply adenine ribosylation, followed by adenosine phosphorylation. Taken together with our previous results on the Rib-1P-dependent salvage of pyrimidine nucleotides, our results give a clear picture of the in vitro Rib-1P recycling, for both purine and pyrimidine salvage.


Asunto(s)
Encéfalo/metabolismo , Fosforribosil Pirofosfato/metabolismo , Purinas/metabolismo , Ribosamonofosfatos/metabolismo , Animales , Técnicas In Vitro , Masculino , Fosfotransferasas/metabolismo , Nucleótidos de Pirimidina/metabolismo , Ratas , Ratas Wistar , Ciclo del Sustrato
2.
J Am Podiatr Med Assoc ; 103(4): 297-305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23878382

RESUMEN

BACKGROUND: In a previous pilot study of "cruisers" (nonindependent ambulation), "early walkers" (independent ambulation for 0-5 months), and "experienced walkers" (independent ambulation for 6-12 months), developmental age significantly affected the children's stability when walking and performing functional activities. We sought to examine how shoe structural characteristics affect plantar pressure distribution in early walkers. METHODS: Torsional flexibility was evaluated in four shoe designs (UltraFlex, MedFlex, LowFlex, and Stiff based on decreasing relative flexibility) with a structural testing machine. Plantar pressures were recorded in 25 early walkers while barefoot and shod at self-selected walking speeds. Peak pressure was calculated over ten masked regions for the barefoot and shod conditions. RESULTS: Torsional flexibility, the angular rotation divided by the applied moment about the long axis of the shoe, was different across the four shoe designs. As expected, UltraFlex was the most flexible and Stiff was the least flexible. As applied moment increased, torsional flexibility decreased in all footwear. When evaluating early walkers during gait, peak pressure was significantly different across shoe conditions for all of the masked regions. The stiffest shoe had the lowest peak pressures and the most flexible shoe had the highest. CONCLUSIONS: It is likely that increased shoe flexibility promoted greater plantar loading. Plantar pressures while wearing the most flexible shoe are similar to those while barefoot. This mechanical feedback may enhance proprioception, which is a desirable attribute for children learning to walk.


Asunto(s)
Pie/fisiopatología , Marcha/fisiología , Zapatos , Caminata/fisiología , Fenómenos Biomecánicos , Niño , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , New York , Docilidad , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA