Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730645

RESUMEN

BACKGROUND: Gene rearrangements affecting KMT2A are frequent in acute myeloid leukemia (AML) and are often associated with a poor prognosis. KMT2A gene fusions are often detected by chromosome banding analysis and confirmed by fluorescence in situ hybridization. However, small intragenic insertions, termed KMT2A partial tandem duplication (KMT2A-PTD), are particularly challenging to detect using standard molecular and cytogenetic approaches. METHODS: We have validated the use of a custom hybrid-capture-based next-generation sequencing (NGS) panel for comprehensive profiling of AML patients seen at our institution. This NGS panel targets the entire consensus coding DNA sequence of KMT2A. To deduce the presence of a KMT2A-PTD, we used the relative ratio of KMT2A exons coverage. We sought to corroborate the KMT2A-PTD NGS results using (1) multiplex-ligation probe amplification (MLPA) and (2) optical genome mapping (OGM). RESULTS: We analyzed 932 AML cases and identified 41 individuals harboring a KMT2A-PTD. MLPA, NGS, and OGM confirmed the presence of a KMT2A-PTD in 22 of the cases analyzed where orthogonal testing was possible. The two false-positive KMT2A-PTD calls by NGS could be explained by the presence of cryptic structural variants impacting KMT2A and interfering with KMT2A-PTD analysis. OGM revealed the nature of these previously undetected gene rearrangements in KMT2A, while MLPA yielded inconclusive results. MLPA analysis for KMT2A-PTD is limited to exon 4, whereas NGS and OGM resolved KMT2A-PTD sizes and copy number levels. CONCLUSIONS: KMT2A-PTDs are complex gene rearrangements that cannot be fully ascertained using a single genomic platform. MLPA, NGS panels, and OGM are complementary technologies applied in standard-of-care testing for AML patients. MLPA and NGS panels are designed for targeted copy number analysis; however, our results showed that integration of concurrent genomic alterations is needed for accurate KMT2A-PTD identification. Unbalanced chromosomal rearrangements overlapping with KMT2A can interfere with the diagnostic sensitivity and specificity of copy-number-based KMT2A-PTD detection methodologies.

2.
Cancer Cytopathol ; 118(6): 450-6, 2010 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-21240995

RESUMEN

BACKGROUND: The aims of this study were to compare the quality of DNA recovered from fine-needle aspirates (FNAs) stored on Whatman FTA cards with that retrieved from corresponding cell blocks and to determine whether the DNA extracted from the cards is suitable for multiple mutation analyses. METHODS: FNAs collected from 18 resected lung tumors and cell suspensions from 4 lung cancer cell lines were placed on FTA Indicating Micro Cards and further processed to produce paired formalin-fixed paraffin-embedded (FFPE) cell blocks. Fragment analysis was used for the detection of EGFR exon 19 deletion, and direct sequencing for detection of EGFR exon 21 L858R mutation and exon 2 deletion of KRAS. Corresponding FFPE tissue sections from 2 resection specimens were also tested. RESULTS: Analyses were successful with all FNAs and lung cancer-derived cell lines collected on cards. Polymerase chain reaction failed in 2 cell blocks. For FNAs collected on cards, 5 cases showed EGFR and 3 showed KRAS mutations. Eleven cases were wild type. With cell blocks, 4 cases were found to harbor KRAS and 4 harbored EGFR mutations. All lung cancer-derived cell lines tested positive for their respective mutations, and there was complete agreement between card and cell block FNA samples for EGFR exon 21. For EGFR exon 19, 1 of 18 cases showed discordant results between the card and cell block, and for KRAS 1 of 17. The two resection specimens tested gave concordant results with the FTA card. CONCLUSIONS: Storage of cytologic material on FTA cards can maximize and simplify sample procurement for multiple mutational analyses with results similar to those from cell blocks.


Asunto(s)
Biopsia con Aguja Fina/métodos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Bancos de Tejidos , Proteínas ras/genética , Línea Celular Tumoral , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Manejo de Especímenes
3.
Cancer ; 116(24): 5599-607, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20824720

RESUMEN

BACKGROUND: National Cancer Institute of Canada Clinical Trials Group PA.3 (NCIC CTG PA.3) was a phase 3 study (n = 569) that demonstrated benefits for overall survival and progression-free survival with the addition of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib to gemcitabine in patients with advanced pancreatic carcinoma (APC). Mutation status of the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and EGFR gene copy number (GCN) were evaluated as predictive markers in 26% of patients who had tumor samples available for analysis. METHODS: KRAS mutation status was evaluated by direct sequencing of exon 2, and EGFR GCN was determined by fluorescence in situ hybridization (FISH) analysis. The results were correlated with survival, which was the primary endpoint of the trial. RESULTS: KRAS analysis was successful in 117 patients, and EGFR FISH analysis was successful in 107 patients. KRAS mutations were identified in 92 patients (78.6%), and EGFR amplification or high polysomy (FISH-positive results) was identified in 50 patients (46.7%). The hazard ratio of death between gemcitabine/erlotinib and gemcitabine/placebo was 0.66 (95% confidence interval [CI], 0.28-1.57) for patients with wild-type KRAS and 1.07 (95% CI, 0.68-1.66) for patients with mutant KRAS (P value for interaction = .38), and the hazard ratio was 0.6 (95% CI, 0.34-1.07) for FISH-negative patients and 0.90 (95% CI, 0.49-1.65) for FISH-positive patients (P value for interaction = .32). CONCLUSIONS: In a molecular subset analysis of patients from NCIC CTG PA.3, EGFR GCN and KRAS mutation status were not identified as markers predictive of a survival benefit from the combination of erlotinib with gemcitabine for the first-line treatment of APC.


Asunto(s)
Biomarcadores de Tumor/análisis , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Quinazolinas/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Canadá , Desoxicitidina/administración & dosificación , Supervivencia sin Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib , Dosificación de Gen , Humanos , Mutación , Neoplasias Pancreáticas/mortalidad , Valor Predictivo de las Pruebas , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Resultado del Tratamiento , Proteínas ras/análisis , Proteínas ras/genética , Gemcitabina
4.
Cell ; 123(4): 593-605, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16286008

RESUMEN

The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2.


Asunto(s)
Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Quinasas Ciclina-Dependientes/genética , Regulación hacia Abajo/genética , Epistasis Genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/genética , Metilación , Metiltransferasas/genética , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/genética , Sirtuinas/metabolismo , Supresión Genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA