Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small Methods ; 8(2): e2300431, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37349857

RESUMEN

The facile synthesis and beneficial properties of tin oxide have driven the development of efficient planar perovskite solar cells (PSCs). To increase the PSC performance, alkali salts are used to treat the SnO2 surface to minimize the defect states. However, the underlying mechanism of alkali cations' role in the PSCs needs further exploration. Herein the effect of alkali fluoride salts (KF, RbF, and CsF) on the properties of SnO2 and PSC performance is investigated. The results show different alkali have significant roles depending on their nature. Larger cations Cs+ preferably locate at the SnO2 film surface to passivate surface defects and enhance conductivity, while smaller cations like Rb+ or K+ cations tend to diffuse into the perovskite layer to reduce trap density of the material. The former effect leads to enhanced fill factor while the latter effect increases the open circuit voltage of the device. It is then demonstrated that a dual cation post-treatment of the SnO2 layer with RbF and CsF achieves PSC with a significantly higher power conversion efficiency (PCE) of 21.66% compared to pristine PSC with a PCE of 19.71%. This highlights the significance of defect engineering of SnO2 using selective multiple alkali treatment to improve PSC performance.

2.
ACS Nano ; 18(26): 16994-17006, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38898819

RESUMEN

The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI3-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI3 crystal, entering via iodine vacancies at the surface, creating superoxide (O2-) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional Cs4PbI6 capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI3 films. This functional modification is demonstrated in γ-CsPbI2Br perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.

3.
Int J Nanomedicine ; 14: 6749-6777, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692550

RESUMEN

Janus particles, which are named after the two-faced Roman god Janus, have two distinct sides with different surface features, structures, and compositions. This asymmetric structure enables the combination of different or even incompatible physical, chemical, and mechanical properties within a single particle. Much effort has been focused on the preparation of Janus particles with high homogeneity, tunable size and shape, combined functionalities, and scalability. With their unique features, Janus particles have attracted attention in a wide range of applications such as in optics, catalysis, and biomedicine. As a biomedical device, Janus particles offer opportunities to incorporate therapeutics, imaging, or sensing modalities in independent compartments of a single particle in a spatially controlled manner. This may result in synergistic actions of combined therapies and multi-level targeting not possible in isotropic systems. In this review, we summarize the latest advances in employing Janus particles as therapeutic delivery carriers, in vivo imaging probes, and biosensors. Challenges and future opportunities for these particles will also be discussed.


Asunto(s)
Diagnóstico por Imagen/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/uso terapéutico , Nanomedicina Teranóstica/métodos , Animales , Técnicas Biosensibles , Medios de Contraste/química , Humanos , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA