Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 21(5): 5424-31, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482113

RESUMEN

Quasi-periodic WO(3) nanoislands are introduced to extract two optical modes in organic light-emitting diodes. The nano-scaled and size-tunable WO(3) islands were fabricated by use of wet-etching with self-aggregated Ag mask. The improvement of light extraction efficiency originates to the recovery of light losses which are surface plasmon mode and waveguide mode. As a result, external quantum efficiency and power efficiency were increased. No changes in emission spectrum and CIE color coordinates with WO(3) nanoislands at various observation angles are desirable if this device is to be utilized in optical system. Furthermore, cost-effective fabrication makes it possible to adopt this system in large area fabrication.

2.
Opt Express ; 20 Suppl 2: A309-17, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418680

RESUMEN

We present an organic light emitting diode with a perforated WO3 hole injection layer to improve the light extraction efficiency. The two-dimensionally perforated WO3 layer was fabricated by use of colloidal lithography. The light extraction efficiency was improved due to Bragg scattering of waveguide modes and surface plasmon polaritons, and the operating voltage was also decreased. As a result, the external quantum efficiency and the power efficiency were increased as compared with those of conventional organic light emitting diodes without WO3 layer. The angular dependence of emission characteristics was investigated by measuring radiant intensity profiles for emission angles and azimuthal angles.

3.
ACS Appl Mater Interfaces ; 13(33): 39660-39670, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387461

RESUMEN

Red, green, and blue top-emission organic light-emitting diodes (RGB TOLEDs) suffer from white color change with viewing angle due to the microcavity effect, called white angular dependence (WAD). Great efforts are devoted by applying various kinds of hazy films, but they suffer from poor mechanical stability and optical transmittance. Herein, we introduce an air-gap-embedded hazy film (AEHF) to solve these problems and suppress WAD in RGB TOLEDs. The AEHF is designed with optical simulation to realize high haze with transparency. By tuning geometries of the air gap inside the polymer, the AEHF realizes high haze of more than 90% in all RGB colors while maintaining high transparency. To experimentally demonstrate the AEHF, the O2 plasma is treated on a polymer film with AgCl as an etching mask to fabricate microstructures with high aspect ratios. Afterward, PDMS is coated on the patterned surface; air gaps develop spontaneously in the valleys between microstructures during the coating process. Using these processes, an air gap with 1.2 µm size and 400 nm period is formed inside the film and ∼100% haze is achieved while maintaining a high transmittance of 88%; these results agree well with rigorous coupled wave analysis results. By utilizing the AEHF into TOLEDs, the WAD can be drastically suppressed by 95.2% compared with that of a device without AEHF.

4.
Nanoscale ; 12(16): 8750-8757, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32141458

RESUMEN

We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm.

5.
ACS Appl Mater Interfaces ; 8(5): 3326-32, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26800204

RESUMEN

We enhanced the optical transmittance of a multilayer barrier film by inserting a refractive index grading layer (RIGL). The result indicates that the Fresnel reflection, induced by the difference of refractive indices between Si(x)N(y) and SiO2, is reduced by the RIGL. To eliminate the Fresnel reflection while maintaining high transmittance, the optimized design of grading structures with the RIGL was conducted using an optical simulator. With the RIGL, we achieved averaged transmittance in the visible wavelength region by 89.6%. It is found that the optimized grading structure inserting the multilayer barrier film has a higher optical transmittance (89.6%) in the visible region than that of a no grading sample (82.6%). Furthermore, luminance is enhanced by 14.5% (from 10,190 to 11,670 cd m(-2) at 30 mA cm(-2)) when the grading structure is applied to organic light-emitting diodes. Finally, the results offer new opportunities in development of multilayer barrier films, which assist industrialization of very cost-effective flexible organic electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA