Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(6): 1277-89, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25480293

RESUMEN

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:ß-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galß1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.


Asunto(s)
Escherichia coli/fisiología , Inmunoglobulina M/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/transmisión , Plasmodium/fisiología , Polisacáridos/inmunología , Adulto , Animales , Anopheles/parasitología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Autoantígenos/inmunología , Línea Celular Tumoral , Niño , Escherichia coli/clasificación , Escherichia coli/inmunología , Femenino , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Humanos , Inmunoglobulina M/sangre , Malaria Falciparum/microbiología , Malaria Falciparum/parasitología , Ratones , Plasmodium/clasificación , Plasmodium/crecimiento & desarrollo , Plasmodium/inmunología , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Esporozoítos/inmunología , Receptor Toll-Like 9/agonistas
2.
Proc Natl Acad Sci U S A ; 119(40): e2205062119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161903

RESUMEN

Limiting CD4+ T cell responses is important to prevent solid organ transplant rejection. In a mouse model of costimulation blockade-dependent cardiac allograft tolerance, we previously reported that alloreactive CD4+ conventional T cells (Tconvs) develop dysfunction, losing proliferative capacity. In parallel, induction of transplantation tolerance is dependent on the presence of regulatory T cells (Tregs). Whether susceptibility of CD4+ Tconvs to Treg suppression is modulated during tolerance induction is unknown. We found that alloreactive Tconvs from transplant tolerant mice had augmented sensitivity to Treg suppression when compared with memory T cells from rejector mice and expressed a transcriptional profile distinct from these memory T cells, including down-regulated expression of the transcription factor Special AT-rich sequence-binding protein 1 (Satb1). Mechanistically, Satb1 deficiency in CD4+ T cells limited their expression of CD25 and IL-2, and addition of Tregs, which express higher levels of CD25 than Satb1-deficient Tconvs and successfully competed for IL-2, resulted in greater suppression of Satb1-deficient than wild-type Tconvs in vitro. In vivo, Satb1-deficient Tconvs were more susceptible to Treg suppression, resulting in significantly prolonged skin allograft survival. Overall, our study reveals that transplantation tolerance is associated with Tconvs' susceptibility to Treg suppression, via modulated expression of Tconv-intrinsic Satb1. Targeting Satb1 in the context of Treg-sparing immunosuppressive therapies might be exploited to improve transplant outcomes.


Asunto(s)
Supervivencia de Injerto , Proteínas de Unión a la Región de Fijación a la Matriz , Linfocitos T Reguladores , Factores de Transcripción , Tolerancia al Trasplante , Animales , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Memoria Inmunológica/genética , Interleucina-2/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia al Trasplante/genética , Tolerancia al Trasplante/inmunología
3.
Am J Transplant ; 24(6): 933-943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38228228

RESUMEN

Following solid organ transplantation, small precursor populations of polyclonal CD8+ T cells specific for any graft-expressed antigen preferentially expand their high-affinity clones. This phenomenon, termed "avidity maturation," results in a larger population of CD8+ T cells with increased sensitivity to alloantigen, posing a greater risk for graft rejection. Using a mouse model of minor-mismatched skin transplantation, coupled with the tracking of 2 skin graft-reactive CD8+ T cell receptor-transgenic tracer populations with high and low affinity for the same peptide-major histocompatibility complex, we explored the conventional paradigm that CD8+ T cell avidity maturation occurs through T cell receptor affinity-based competition for cognate antigen. Our data revealed "interclonal CD8-CD8 help," whereby lower/intermediate affinity clones help drive the preferential expansion of their higher affinity counterparts in an interleukin-2/CD25-dependent manner. Consequently, the CD8-helped high-affinity clones exhibit greater expansion and develop augmented effector functions in the presence of their low-affinity counterparts, correlating with more severe graft damage. Finally, interclonal CD8-CD8 help was suppressed by costimulation blockade treatment. Thus, high-affinity CD8+ T cells can leverage help from low-affinity CD8+ T cells of identical specificity to promote graft rejection. Suppressing provision of interclonal CD8-CD8 help may be important to improve transplant outcomes.


Asunto(s)
Linfocitos T CD8-positivos , Rechazo de Injerto , Ratones Endogámicos C57BL , Trasplante de Piel , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Rechazo de Injerto/inmunología , Isoantígenos/inmunología , Ratones Transgénicos , Ratones Endogámicos BALB C , Supervivencia de Injerto/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética
4.
Am J Transplant ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219866

RESUMEN

Mouse models have been instrumental in understanding mechanisms of transplant rejection and tolerance, but cross-study reproducibility and translation of experimental findings into effective clinical therapies are issues of concern. The Mouse Models in Transplantation symposium gathered scientists and physician-scientists involved in basic and clinical research in transplantation to discuss the strengths and limitations of mouse transplant models and strategies to enhance their utility. Participants recognized that increased procedure standardization, including the use of prespecified, defined endpoints, and statistical power analyses, would benefit the field. They also discussed the generation of new models that incorporate environmental and genetic variables affecting clinical outcomes as potentially important. If implemented, these strategies are expected to improve the reproducibility of mouse studies and increase their translation to clinical trials and, ideally, new Food and Drug Administration-approved drugs.

5.
Kidney Int ; 103(4): 658-660, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36948765

RESUMEN

Borderline allograft rejection can promote acute rejection and graft loss in some, but not all, patients. In this issue, Cherukuri et al. use a novel test based on peripheral blood transitional T1 B cells producing interleukin-10 and tumor necrosis factor-α, which identifies patients at high risk for poor outcomes. The potential mechanisms by which transitional T1 B cells might modulate alloreactivity need exploration, but following appropriate validation, this biomarker could risk stratify patients in need of early intervention.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Células Precursoras de Linfocitos B , Citocinas , Rechazo de Injerto/diagnóstico , Biomarcadores
6.
Am J Transplant ; 23(11): 1661-1672, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37543092

RESUMEN

Biological sex affects immunity broadly, with recognized effects on the incidence and severity of autoimmune diseases, infections, and malignancies. Consequences of sex on alloimmunity and outcomes in solid organ transplantation are less well defined. Clinical studies have shown that donor and recipient sex independently impact transplant outcomes, which are further modified by aging. Potential mechanisms have thus far not been detailed and may include hormonal, genetic, and epigenetic components. Here, we summarize relevant findings in immunity in addition to studies in clinical and experimental organ transplantation detailing the effects of biological sex on alloimmunity. Understanding both clinical impact and mechanisms is expected to provide critical insights on the complexity of alloimmune responses, with the potential to fine-tune treatment and allocation while providing a rationale to include both sexes in transplant research.


Asunto(s)
Relevancia Clínica , Trasplante de Órganos , Masculino , Femenino , Humanos , Rechazo de Injerto , Trasplante de Órganos/efectos adversos , Donantes de Tejidos
7.
Am J Transplant ; 23(8): 1116-1129, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105316

RESUMEN

Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.


Asunto(s)
Trasplante de Órganos , Tolerancia al Trasplante , Ratones , Humanos , Animales , Antígeno B7-H1 , Quimerismo , Antígenos de Histocompatibilidad Clase II , Complejo Mayor de Histocompatibilidad , Antígenos HLA , Tolerancia Inmunológica , Quimera por Trasplante , Trasplante de Médula Ósea/métodos
8.
Am J Transplant ; 23(1): 133-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695615

RESUMEN

The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.


Asunto(s)
Trasplante de Órganos , Trasplante de Órganos/efectos adversos , Factores de Riesgo , Histocompatibilidad , Prueba de Histocompatibilidad , Procesos de Grupo , Rechazo de Injerto/etiología , Isoanticuerpos
9.
J Infect Dis ; 225(1): 177-185, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34145461

RESUMEN

BACKGROUND: Staphylococcus aureus infections are common throughout the lifespan, with recurrent infections occurring in nearly half of infected children. There is no licensed vaccine, underscoring the need to better understand how S. aureus evades protective immunity. Despite much study, the relative contributions of antibodies and T cells to protection against S. aureus infections in humans are not fully understood. METHODS: We prospectively quantified S. aureus-specific antibody levels by ELISA and T-cell responses by ELISpot in S. aureus-infected and healthy children. RESULTS: S. aureus-specific antibody levels and T-cell responses increased with age in healthy children, suggesting a coordinated development of anti-staphylococcal immunity. Antibody levels against leukotoxin E (LukE) and Panton-Valentine leukocidin (LukS-PV), but not α-hemolysin (Hla), were higher in younger infected children, compared with healthy children; these differences disappeared in older children. We observed a striking impairment of global and S. aureus-specific T-cell function in children with invasive and noninvasive infection, suggesting that S. aureus-specific immune responses are dysregulated during childhood infection regardless of the infection phenotype. CONCLUSIONS: These findings identify a potential mechanism by which S. aureus infection actively evades adaptive immune responses, thereby preventing the development of protective immunity and maintaining susceptibility to recurrent infection.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Exotoxinas/inmunología , Leucocidinas/inmunología , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus , Adolescente , Toxinas Bacterianas , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteínas Hemolisinas/inmunología , Humanos , Lactante , Masculino , Estudios Prospectivos , Estudios Seroepidemiológicos , Linfocitos T , Adulto Joven
10.
Am J Transplant ; 22(10): 2348-2359, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35633180

RESUMEN

Oral antigen exposure is a powerful, non-invasive route to induce immune tolerance to dietary antigens, and has been modestly successful at prolonging graft survival in rodent models of transplantation. To harness the mechanisms of oral tolerance for promoting long-term graft acceptance, we developed a mouse model where the antigen ovalbumin (OVA) was introduced orally prior to transplantation with skin grafts expressing OVA. Oral OVA treatment pre-transplantation promoted permanent graft acceptance and linked tolerance to skin grafts expressing OVA fused to the additional antigen 2W. Tolerance was donor-specific, as secondary donor-matched, but not third-party allografts were spontaneously accepted. Oral OVA treatment promoted an anergic phenotype in OVA-reactive CD4+ and CD8+ conventional T cells (Tconvs) and expanded OVA-reactive Tregs pre-transplantation. However, skin graft acceptance following oral OVA resisted partial depletion of Tregs and blockade of PD-L1. Mechanistically, we revealed a role for the proximal gut draining lymph nodes (gdLNs) in mediating this effect, as an intestinal infection that drains to the proximal gdLNs prevented tolerance induction. Our study extends previous work applying oral antigen exposure to transplantation and serves as proof of concept that the systemic immune mechanisms supporting oral tolerance are sufficient to promote long-term graft acceptance.


Asunto(s)
Isoantígenos , Trasplante de Piel , Animales , Antígenos , Antígeno B7-H1 , Supervivencia de Injerto , Tolerancia Inmunológica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina , Tolerancia al Trasplante
11.
Immunity ; 38(5): 918-29, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23684984

RESUMEN

The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/metabolismo , Factores Reguladores del Interferón/metabolismo , Células Plasmáticas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Citidina Desaminasa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Centro Germinal/inmunología , Factores Reguladores del Interferón/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Células Plasmáticas/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , Transactivadores/metabolismo , Factor de Transcripción AP-1/inmunología , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Proc Natl Acad Sci U S A ; 116(47): 23682-23690, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685610

RESUMEN

Following antigen stimulation, naïve T cells differentiate into memory cells that mediate antigen clearance more efficiently upon repeat encounter. Donor-specific tolerance can be achieved in a subset of transplant recipients, but some of these grafts are rejected after years of stability, often following infections. Whether T cell memory can develop from a tolerant state and whether these formerly tolerant patients develop antidonor memory is not known. Using a mouse model of cardiac transplantation in which donor-specific tolerance is induced with costimulation blockade (CoB) plus donor-specific transfusion (DST), we have previously shown that systemic infection with Listeria monocytogenes (Lm) months after transplantation can erode or transiently abrogate established tolerance. In this study, we tracked donor-reactive T cells to investigate whether memory can be induced when alloreactive T cells are activated in the setting of tolerance. We show alloreactive T cells persist after induction of cardiac transplantation tolerance, but fail to acquire a memory phenotype despite becoming antigen experienced. Instead, donor-reactive T cells develop T cell-intrinsic dysfunction evidenced when removed from the tolerant environment. Notably, Lm infection after tolerance did not rescue alloreactive T cell memory differentiation or functionality. CoB and antigen persistence were sufficient together but not separately to achieve alloreactive T cell dysfunction, and conventional immunosuppression could substitute for CoB. Antigen persistence was required, as early but not late surgical allograft removal precluded the acquisition of T cell dysfunction. Our results demonstrate transplant tolerance-associated T cell-intrinsic dysfunction that is resistant to memory development even after Lm-mediated disruption of tolerance.


Asunto(s)
Supervivencia de Injerto/inmunología , Tolerancia Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Inmunología del Trasplante , Aloinjertos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/trasplante , Factores de Transcripción Forkhead/análisis , Genes Reporteros , Rechazo de Injerto/inmunología , Antígenos H-2/inmunología , Trasplante de Corazón , Antígenos de Histocompatibilidad Clase II/inmunología , Memoria Inmunológica , Isoantígenos/inmunología , Listeria monocytogenes , Listeriosis/inmunología , Transfusión de Linfocitos , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Complicaciones Posoperatorias/inmunología , Linfocitos T Reguladores/inmunología , Donantes de Tejidos
13.
Curr Opin Organ Transplant ; 27(5): 376-384, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35950890

RESUMEN

PURPOSE OF REVIEW: Basic transplant immunology has primarily focused on the definition of mechanisms, but an often-stated aspirational goal is to translate basic mechanistic research into future therapy. Pretransplant donor-specific antibodies (DSA) mediate hyperacute as well as early antibody-mediated rejection (AMR), whereas DSA developing late posttransplantation may additionally mediate chronic rejection. Although contemporary immunosuppression effectively prevents early cellular rejection after transplant in nonsensitized patients, it is less effective at controlling preexisting HLA antibody responses or reversing DSA once established, thus underscoring a need for better therapies. RECENT FINDINGS: We here review the development of a bench-to-bedside approach involving transient proteasome inhibition to deplete plasma cells, combined with maintenance co-stimulation blockade, with CTLA-4Ig or belatacept, to prevent the generation of new antibody-secreting cells (ASCs). SUMMARY: This review discusses how this treatment regimen, which was rationally designed and validated to reverse established DSA responses in mouse models, translated into reversing active AMR in the clinic, as well as desensitizing highly sensitized patients on the transplant waitlist.


Asunto(s)
Isoanticuerpos , Trasplante de Riñón , Animales , Formación de Anticuerpos , Rechazo de Injerto , Antígenos HLA , Humanos , Trasplante de Riñón/efectos adversos , Ratones
14.
Am J Transplant ; 20 Suppl 4: 23-32, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32538534

RESUMEN

Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.


Asunto(s)
Trasplante de Riñón , Trasplante de Órganos , Linfocitos B , Rechazo de Injerto/etiología , Humanos , Isoanticuerpos , Trasplante de Órganos/efectos adversos
15.
Am J Transplant ; 20(10): 2675-2685, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32243663

RESUMEN

Active antibody-mediated rejection (AMR) is a potentially devastating complication and consistently effective treatment remains elusive. We hypothesized that the reversal of acute AMR requires rapid elimination of antibody-secreting plasma cells (PC) with a proteasome inhibitor, bortezomib, followed by the sustained inhibition of PC generation with CTLA4-Ig or belatacept (B/B). We show in mice that B/B therapy selectively depleted mature PC producing donor-specific antibodies (DSA) and reduced DSA, when administered after primary and secondary DSA responses had been established. A pilot investigation was initiated to treat six consecutive patients with active AMR with B/B. Compassionate use of this regimen was initiated for the first patient who developed early, severe acute AMR that did not respond to steroids, plasmapheresis, and intravenous immunoglobulin after his third kidney transplant. B/B treatment resulted in a rapid reversal of AMR, leading us to treat five additional patients who also resolved their acute AMR episode and had sustained disappearance of circulating DSA for ≤30 months. This study provides a proof-of-principle demonstration that mouse models can identify mechanistically rational therapies for the clinic. Follow-up investigations with a more stringent clinical design are warranted to test whether B/B improves on the standard of care for the treatment of acute AMR.


Asunto(s)
Trasplante de Riñón , Abatacept/uso terapéutico , Animales , Formación de Anticuerpos , Bortezomib/uso terapéutico , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/prevención & control , Humanos , Isoanticuerpos , Ratones
16.
Am J Transplant ; 20(12): 3620-3630, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32506824

RESUMEN

HLA antibodies pose a significant barrier to transplantation and current strategies to reduce allosensitization are limited. We hypothesized that augmenting proteasome inhibitor (PI) based desensitization with costimulation blockade (belatacept) to mitigate germinal center (GC) responses might increase efficacy and prevent rebound. Four highly sensitized (calculated panel reactive antibody [cPRA] class I and/or II >99%, complement-dependent cytotoxicity panel reactive antibody [CDC PRA+], C1q+) heart transplant candidates were treated with the combination of belatacept and PI therapy, which significantly reduced both class I and II HLA antibodies and increased the likelihood of identifying an acceptable donor. Three negative CDC crossmatches were achieved against 3, 6, and 8 donor-specific antibodies (DSA), including those that were historically C1q+ binding. Posttransplant, sustained suppression of 3 of 3, 4 of 6, and 8 of 8 DSA (cases 1-3) was achieved. Analysis of peripheral blood mononuclear cells before and after desensitization in one case revealed a decrease in naïve and memory B cells and a reduction in T follicular helper cells with a phenotype suggesting recent GC activity (CD38, PD1, and ICOS). Furthermore, a shift in the natural killer cell phenotype was observed with features suggestive of activation. Our findings support synergism between PI based desensitization and belatacept facilitating transplantation with a negative CDC crossmatch against historically strong, C1q binding antibodies.


Asunto(s)
Trasplante de Corazón , Complejo de la Endopetidasa Proteasomal , Abatacept/uso terapéutico , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/prevención & control , Antígenos HLA , Prueba de Histocompatibilidad , Isoanticuerpos , Leucocitos Mononucleares
17.
Am J Transplant ; 20(10): 2652-2668, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342639

RESUMEN

The purpose of the STAR 2019 Working Group was to build on findings from the initial STAR report to further clarify the expectations, limitations, perceptions, and utility of alloimmune assays that are currently in use or in development for risk assessment in the setting of organ transplantation. The goal was to determine the precision and clinical feasibility/utility of such assays in evaluating both memory and primary alloimmune risks. The process included a critical review of biologically driven, state-of-the-art, clinical diagnostics literature by experts in the field and an open public forum in a face-to-face meeting to promote broader engagement of the American Society of Transplantation and American Society of Histocompatibility and Immunogenetics membership. This report summarizes the literature review and the workshop discussions. Specifically, it highlights (1) available assays to evaluate the attributes of HLA antibodies and their utility both as clinical diagnostics and as research tools to evaluate the effector mechanisms driving rejection; (2) potential assays to assess the presence of alloimmune T and B cell memory; and (3) progress in the development of HLA molecular mismatch computational scores as a potential prognostic biomarker for primary alloimmunity and its application in research trial design.


Asunto(s)
Isoanticuerpos , Trasplante de Riñón , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Procesos de Grupo , Antígenos HLA , Histocompatibilidad
18.
Cell Immunol ; 349: 104061, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32059816

RESUMEN

Transplantation of fully allogeneic organs into immunocompetent recipients invariably elicits T cell and B cell responses that lead to the production of donor-specific antibodies (DSA). When immunosuppression is inadequate donor-specific T cell and B cell responses escape, leading to T cell-mediated rejection (TCMR), antibody mediated (ABMR) rejection, or mixed rejection (MR) exhibiting features of both TCMR and ABMR. Current literature suggests that ABMR is a major cause of late graft loss, and that new therapies to curtail the donor-specific humoral response are necessary. The majority of research into B cell responses elicited by allogeneic allografts in both preclinical models and clinical studies, has focused on the function of B cells as antibody-secreting cells and the pathogenic effects of DSA as mediators of ABMR. However, it has long been recognized that the DSA response to allografts is T cell-dependent, and that B cells engage in cognate interactions with T cells that provide "help" and promote B cell differentiation into antibody-secreting cells (ASCs). This review focusses the function of B cells as antigen-presenting cells (APCs) to T cells in lymphoid organs, how they may be critical APCs to T cell in the allograft, and the functional consequences of these interactions.


Asunto(s)
Aloinjertos/inmunología , Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Rechazo de Injerto/inmunología , Tolerancia al Trasplante/inmunología , Animales , Especificidad de Anticuerpos , Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular , Supresión Clonal , Trasplante de Corazón , Humanos , Isoanticuerpos/biosíntesis , Isoantígenos/inmunología , Trasplante de Riñón , Ratones , Bazo/inmunología , Timo/inmunología
19.
Am J Transplant ; 19(8): 2155-2163, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30803121

RESUMEN

Over the past three decades, improved immunosuppression has significantly reduced T cell-mediated acute rejection rates, but long-term graft survival rates have seen only marginal improvement. The cause of late graft loss has been under intense investigation, and chronic antibody-mediated rejection (AMR) has been identified as one of the leading causes, thus providing a strong rationale for basic science investigation into donor-specific B cells and antibodies in transplantation and ways to mitigate their pathogenicity. In 2018, the American Society of Transplantation launched a community-wide online discussion of Outstanding Questions in Transplantation, and the topic of B cell biology and donor-specific antibody prevention emerged as a major area of interest to the community, leading to a highly engaged dialogue, with comments from basic and translational scientists as well as physicians (http://community.myast.org/communities/community-home/digestviewer). We have summarized this discussion from a bedside to bench perspective and have organized this review into outstanding questions within the paradigm that AMR is a leading cause of graft loss in the clinic, and points of view that challenge aspects of this paradigm. We also highlight opportunities for basic and translational scientists to contribute to the resolution of these questions, mapping important future directions for the transplant research field.


Asunto(s)
Linfocitos B/inmunología , Rechazo de Injerto/etiología , Supervivencia de Injerto/inmunología , Isoanticuerpos/inmunología , Trasplante de Órganos/efectos adversos , Rechazo de Injerto/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA