Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Psychiatry ; 27(2): 1256-1273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35087196

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-ß peptide (Aß) contributes to the etiology and progression of the disease. Aß is derived from the amyloid-ß precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aß regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aß1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aß, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Calcio , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero
2.
Mol Psychiatry ; 26(10): 5636-5657, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-31942037

RESUMEN

Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- ß (Aß) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aß is a neurotoxic peptide excised from the amyloid-ß precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aß (Aß40 and Aß42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aß42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Humanos , Ratones , MicroARNs/genética , Proteínas tau/genética
3.
Sci Rep ; 11(1): 621, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436686

RESUMEN

Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-ß (Aß) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aß levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aß levels (Aß40 and Aß42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aß40 (p = 001) and Aß42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aß levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aß40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aß precursor protein-α (sAPPα) levels, suggesting the decrease in Aß did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aß deposition.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Campos Electromagnéticos , Feto/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Encéfalo/efectos de la radiación , Feto/efectos de la radiación , Humanos , Magnetoterapia , Prohibitinas
4.
Sci Rep ; 9(1): 18261, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797941

RESUMEN

Lithium (Li) is a medication long-used to treat bipolar disorder. It is currently under investigation for multiple nervous system disorders, including Alzheimer's disease (AD). While perturbation of RNA levels by Li has been previously reported, its effects on the whole transcriptome has been given little attention. We, therefore, sought to determine comprehensive effects of Li treatment on RNA levels. We cultured and differentiated human neuroblastoma (SK-N-SH) cells to neuronal cells with all-trans retinoic acid (ATRA). We exposed cultures for one week to lithium chloride or distilled water, extracted total RNA, depleted ribosomal RNA and performed whole-transcriptome RT-sequencing. We analyzed results by RNA length and type. We further analyzed expression and protein interaction networks between selected Li-altered protein-coding RNAs and common AD-associated gene products. Lithium changed expression of RNAs in both non-specific (inverse to sequence length) and specific (according to RNA type) fashions. The non-coding small nucleolar RNAs (snoRNAs) were subject to the greatest length-adjusted Li influence. When RNA length effects were taken into account, microRNAs as a group were significantly less likely to have had levels altered by Li treatment. Notably, several Li-influenced protein-coding RNAs were co-expressed or produced proteins that interacted with several common AD-associated genes and proteins. Lithium's modification of RNA levels depends on both RNA length and type. Li activity on snoRNA levels may pertain to bipolar disorders while Li modification of protein coding RNAs may be relevant to AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Cloruro de Litio/farmacología , ARN/genética , Transcriptoma/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Cloruro de Litio/uso terapéutico
5.
PLoS One ; 11(10): e0160314, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27764084

RESUMEN

In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κß) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer's disease (AD), ß-amyloid (Aß) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Apoptosis/efectos de los fármacos , Neuronas/metabolismo , Péptidos/farmacología , Factor de Transcripción ReIA/metabolismo , Sitios de Unión , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Células Cultivadas , Feto/citología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Epigenomics ; 8(3): 373-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26950428

RESUMEN

The origin of idiopathic diseases is still poorly understood. The latent early-life associated regulation (LEARn) model unites environmental exposures and gene expression while providing a mechanistic underpinning for later-occurring disorders. We propose that this process can occur across generations via transgenerational LEARn (tLEARn). In tLEARn, each person is a 'unit' accumulating preclinical or subclinical 'hits' as in the original LEARn model. These changes can then be epigenomically passed along to offspring. Transgenerational accumulation of 'hits' determines a sporadic disease state. Few significant transgenerational hits would accompany conception or gestation of most people, but these may suffice to 'prime' someone to respond to later-life hits. Hits need not produce symptoms or microphenotypes to have a transgenerational effect. Testing tLEARn requires longitudinal approaches. A recently proposed longitudinal epigenome/envirome-wide association study would unite genetic sequence, epigenomic markers, environmental exposures, patient personal history taken at multiple time points and family history.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Modelos Biológicos , Enfermedad de Alzheimer/genética , Animales , Epigenómica , Femenino , Dosificación de Gen , Variación Genética , Humanos , Masculino , Exposición Materna , Enfermedad de Parkinson/genética , Embarazo , Esquizofrenia/genética
7.
Curr Alzheimer Res ; 12(1): 32-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25523424

RESUMEN

Amyloid-ß proteins (Aß) of 42 (Aß42) and 40 aa (Aß40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aß precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aß and also induce the entire spectrum of pathology associated with the disease. Aß accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by ß-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aß. Although Aß accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aß production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aß42 or both Aß40 and Aß42. However, the vast majority of AD patients accumulate Aß without these known mutations. This led to proposals that impairment of Aß degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aß and we have recently established that the mechanism is by skirting Aß degradation. This review outlines major cellular pathways of Aß degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aß turnover.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Apolipoproteínas E/genética , Humanos , Modelos Biológicos , Mutación , Placa Amiloide/patología , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Transducción de Señal/genética
8.
Mol Brain ; 7: 63, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25223359

RESUMEN

BACKGROUND: Culturing primary cortical neurons is an essential neuroscience technique. However, most cultures are derived from rodent brains and standard protocols for human brain cultures are sparse. Herein, we describe preparation, maintenance and major characteristics of a primary human mixed brain culture, including neurons, obtained from legally aborted fetal brain tissue. This approach employs standard materials and techniques used in the preparation of rodent neuron cultures, with critical modifications. RESULTS: This culture has distinct differences from rodent cultures. Specifically, a significant numbers of cells in the human culture are derived from progenitor cells, and the yield and survival of the cells grossly depend on the presence of bFGF. In the presence of bFGF, this culture can be maintained for an extended period. Abundant productions of amyloid-ß, tau and proteins make this a powerful model for Alzheimer's research. The culture also produces glia and different sub-types of neurons. CONCLUSION: We provide a well-characterized methodology for human mixed brain cultures useful to test therapeutic agents under various conditions, and to carry forward mechanistic and translational studies for several brain disorders.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Neurociencias , Investigación , Animales , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Embrión de Mamíferos/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neuroglía/citología , Ácidos Nucleicos/metabolismo , ARN Interferente Pequeño/metabolismo , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/efectos de los fármacos , Coloración y Etiquetado , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA