Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(3): e23448, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305779

RESUMEN

Diabetes causes a range of complications that can affect multiple organs. Hyperglycemia is an important driver of diabetes-associated complications, mediated by biological processes such as dysfunction of endothelial cells, fibrosis, and alterations in leukocyte number and function. Here, we dissected the transcriptional response of key cell types to hyperglycemia across multiple tissues using single-cell RNA sequencing (scRNA-seq) and identified conserved, as well as organ-specific, changes associated with diabetes complications. By studying an early time point of diabetes, we focus on biological processes involved in the initiation of the disease, before the later organ-specific manifestations had supervened. We used a mouse model of type 1 diabetes and performed scRNA-seq on cells isolated from the heart, kidney, liver, and spleen of streptozotocin-treated and control male mice after 8 weeks and assessed differences in cell abundance, gene expression, pathway activation, and cell signaling across organs and within organs. In response to hyperglycemia, endothelial cells, macrophages, and monocytes displayed organ-specific transcriptional responses, whereas fibroblasts showed similar responses across organs, exhibiting altered metabolic gene expression and increased myeloid-like fibroblasts. Furthermore, we found evidence of endothelial dysfunction in the kidney, and of endothelial-to-mesenchymal transition in streptozotocin-treated mouse organs. In summary, our study represents the first single-cell and multi-organ analysis of early dysfunction in type 1 diabetes-associated hyperglycemia, and our large-scale dataset (comprising 67 611 cells) will serve as a starting point, reference atlas, and resource for further investigating the events leading to early diabetic disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Ratones , Animales , Masculino , Diabetes Mellitus Tipo 1/genética , Células Endoteliales , Estreptozocina/toxicidad , Ratones Endogámicos C57BL , Hiperglucemia/genética , Análisis de Secuencia de ARN
2.
Development ; 148(3)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462113

RESUMEN

Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.


Asunto(s)
Corazón/crecimiento & desarrollo , Vasos Linfáticos , Macrófagos/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/genética , Adhesión Celular , Línea Celular , Células Endoteliales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Inflamación , Linfangiogénesis , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Organogénesis/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Saco Vitelino
3.
FASEB J ; 37(11): e23231, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779347

RESUMEN

Some metabolic diseases, such as diabetes and hyperlipidemia, are associated with a state of inflammation, which adversely affects cardiovascular health. Emerging evidence suggests that long-term hyperactivation of innate immune cells and their bone marrow progenitors, termed trained immunity, functions to accelerate atherosclerosis and its complications in cardiometabolic diseases. This review will focus on how trained immunity is established, particularly through metabolic and epigenetic reprogramming, to cause persistent and deleterious changes in immune cell function, even after the original stimulus has been corrected or removed. Understanding the mechanisms driving maladaptive trained immunity and its fundamental contribution to cardiovascular disease might enable the development of novel disease-modifying therapeutics for the reduction in cardiovascular risk in diabetes, hyperlipidemia, and related cardiometabolic states.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hiperlipidemias , Humanos , Inmunidad Innata , Inmunidad Entrenada , Enfermedades Cardiovasculares/etiología
4.
Circulation ; 144(12): 961-982, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34255973

RESUMEN

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Asunto(s)
Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Hiperglucemia/inmunología , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Animales , Aterosclerosis/patología , Células Cultivadas , Diabetes Mellitus Experimental/patología , Endarterectomía Carotidea , Humanos , Hiperglucemia/patología , Leucocitos Mononucleares/patología , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
6.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200257, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34689630

RESUMEN

Cardiac magnetic resonance (CMR) imaging is a valuable modality in the diagnosis and characterization of cardiovascular diseases, since it can identify abnormalities in structure and function of the myocardium non-invasively and without the need for ionizing radiation. However, in clinical practice, it is commonly acquired as a collection of separated and independent 2D image planes, which limits its accuracy in 3D analysis. This paper presents a completely automated pipeline for generating patient-specific 3D biventricular heart models from cine magnetic resonance (MR) slices. Our pipeline automatically selects the relevant cine MR images, segments them using a deep learning-based method to extract the heart contours, and aligns the contours in 3D space correcting possible misalignments due to breathing or subject motion first using the intensity and contours information from the cine data and next with the help of a statistical shape model. Finally, the sparse 3D representation of the contours is used to generate a smooth 3D biventricular mesh. The computational pipeline is applied and evaluated in a CMR dataset of 20 healthy subjects. Our results show an average reduction of misalignment artefacts from 1.82 ± 1.60 mm to 0.72 ± 0.73 mm over 20 subjects, in terms of distance from the final reconstructed mesh. The high-resolution 3D biventricular meshes obtained with our computational pipeline are used for simulations of electrical activation patterns, showing agreement with non-invasive electrocardiographic imaging. The automatic methodologies presented here for patient-specific MR imaging-based 3D biventricular representations contribute to the efficient realization of precision medicine, enabling the enhanced interpretability of clinical data, the digital twin vision through patient-specific image-based modelling and simulation, and augmented reality applications. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
7.
Eur Heart J ; 41(23): 2168-2179, 2020 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31834357

RESUMEN

AIMS: ST-elevation myocardial infarction is associated with high levels of cardiac sympathetic drive and release of the co-transmitter neuropeptide Y (NPY). We hypothesized that despite beta-blockade, NPY promotes arrhythmogenesis via ventricular myocyte receptors. METHODS AND RESULTS: In 78 patients treated with primary percutaneous coronary intervention, sustained ventricular tachycardia (VT) or fibrillation (VF) occurred in 6 (7.7%) within 48 h. These patients had significantly (P < 0.05) higher venous NPY levels despite the absence of classical risk factors including late presentation, larger infarct size, and beta-blocker usage. Receiver operating curve identified an NPY threshold of 27.3 pg/mL with a sensitivity of 0.83 and a specificity of 0.71. RT-qPCR demonstrated the presence of NPY mRNA in both human and rat stellate ganglia. In the isolated Langendorff perfused rat heart, prolonged (10 Hz, 2 min) stimulation of the stellate ganglia caused significant NPY release. Despite maximal beta-blockade with metoprolol (10 µmol/L), optical mapping of ventricular voltage and calcium (using RH237 and Rhod2) demonstrated an increase in magnitude and shortening in duration of the calcium transient and a significant lowering of ventricular fibrillation threshold. These effects were prevented by the Y1 receptor antagonist BIBO3304 (1 µmol/L). Neuropeptide Y (250 nmol/L) significantly increased the incidence of VT/VF (60% vs. 10%) during experimental ST-elevation ischaemia and reperfusion compared to control, and this could also be prevented by BIBO3304. CONCLUSIONS: The co-transmitter NPY is released during sympathetic stimulation and acts as a novel arrhythmic trigger. Drugs inhibiting the Y1 receptor work synergistically with beta-blockade as a new anti-arrhythmic therapy.


Asunto(s)
Neuropéptido Y , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Animales , Corazón , Humanos , Ratas , Fibrilación Ventricular
8.
Magn Reson Med ; 83(6): 2026-2041, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31697862

RESUMEN

PURPOSE: To assess whether artifacts in multi-slice multi-echo spin echo neck imaging, thought to be caused by brief motion events such as swallowing, can be corrected by reacquiring corrupted central k-space data and estimating the remainder with parallel imaging. METHODS: A single phase-encode line (ky = 0, phase-encode direction anteroposterior) navigator echo was used to identify motion-corrupted data and guide the online reacquisition. If motion corruption was detected in the 7 central k-space lines, they were replaced with reacquired data. Subsequently, GRAPPA reconstruction was trained on the updated central portion of k-space and then used to estimate the remaining motion-corrupted k-space data from surrounding uncorrupted data. Similar compressed sensing-based approaches have been used previously to compensate for respiration in cardiac imaging. The g-factor noise amplification was calculated for the parallel imaging reconstruction of data acquired with a 10-channel neck coil. The method was assessed in scans with 9 volunteers and 12 patients. RESULTS: The g-factor analysis showed that GRAPPA reconstruction of 2 adjacent motion-corrupted lines causes high noise amplification; therefore, the number of 2-line estimations should be limited. In volunteer scans, median ghosting reduction of 24% was achieved with 2 adjacent motion-corrupted lines correction, and image quality was improved in 2 patient scans that had motion corruption close to the center of k-space. CONCLUSION: Motion-corrupted echo-trains can be identified with a navigator echo. Combined reacquisition and parallel imaging estimation reduced motion artifacts in multi-slice MESE when there were brief motion events, especially when motion corruption was close to the center of k-space.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Reproducibilidad de los Resultados
9.
Circ Res ; 122(8): 1084-1093, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440071

RESUMEN

RATIONALE: Current cardiovascular clinical imaging techniques offer only limited assessment of innate immune cell-driven inflammation, which is a potential therapeutic target in myocardial infarction (MI) and other diseases. Hyperpolarized magnetic resonance (MR) is an emerging imaging technology that generates contrast agents with 10- to 20 000-fold improvements in MR signal, enabling cardiac metabolite mapping. OBJECTIVE: To determine whether hyperpolarized MR using [1-13C]pyruvate can assess the local cardiac inflammatory response after MI. METHODS AND RESULTS: We performed hyperpolarized [1-13C]pyruvate MR studies in small and large animal models of MI and in macrophage-like cell lines and measured the resulting [1-13C]lactate signals. MI caused intense [1-13C]lactate signal in healing myocardial segments at both day 3 and 7 after rodent MI, which was normalized at both time points after monocyte/macrophage depletion. A near-identical [1-13C]lactate signature was also seen at day 7 after experimental MI in pigs. Hyperpolarized [1-13C]pyruvate MR spectroscopy in macrophage-like cell suspensions demonstrated that macrophage activation and polarization with lipopolysaccharide almost doubled hyperpolarized lactate label flux rates in vitro; blockade of glycolysis with 2-deoxyglucose in activated cells normalized lactate label flux rates and markedly inhibited the production of key proinflammatory cytokines. Systemic administration of 2-deoxyglucose after rodent MI normalized the hyperpolarized [1-13C]lactate signal in healing myocardial segments at day 3 and also caused dose-dependent improvement in IL (interleukin)-1ß expression in infarct tissue without impairing the production of key reparative cytokines. Cine MRI demonstrated improvements in systolic function in 2-DG (2-deoxyglucose)-treated rats at 3 months. CONCLUSIONS: Hyperpolarized MR using [1-13C]pyruvate provides a novel method for the assessment of innate immune cell-driven inflammation in the heart after MI, with broad potential applicability across other cardiovascular disease states and suitability for early clinical translation.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico por imagen , Miocarditis/diagnóstico por imagen , Animales , Isótopos de Carbono/análisis , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacología , Femenino , Glucólisis/efectos de los fármacos , Ácido Láctico/análisis , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Imagen por Resonancia Cinemagnética/métodos , Ratones , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Miocarditis/inmunología , Miocarditis/metabolismo , Miocardio/inmunología , Miocardio/metabolismo , Ácido Pirúvico/análisis , Células RAW 264.7 , Ratas , Ratas Wistar , Porcinos
10.
J Cardiovasc Magn Reson ; 22(1): 3, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31915031

RESUMEN

BACKGROUND: Myocardial recovery after primary percutaneous coronary intervention in acute myocardial infarction is variable and the extent and severity of injury are difficult to predict. We sought to investigate the role of cardiovascular magnetic resonance T1 mapping in the determination of myocardial injury very early after treatment of ST-segment elevation myocardial infarction (STEMI). METHODS: STEMI patients underwent 3 T cardiovascular magnetic resonance (CMR), within 3 h of primary percutaneous intervention (PPCI). T1 mapping determined the extent (area-at-risk as %left ventricle, AAR) and severity (average T1 values of AAR) of acute myocardial injury, and related these to late gadolinium enhancement (LGE), and microvascular obstruction (MVO). The characteristics of myocardial injury within 3 h was compared with changes at 24-h to predict final infarct size. RESULTS: Forty patients were included in this study. Patients with average T1 values of AAR ≥1400 ms within 3 h of PPCI had larger LGE at 24-h (33% ±14 vs. 18% ±10, P = 0.003) and at 6-months (27% ±9 vs. 12% ±9; P < 0.001), higher incidence and larger extent of MVO (85% vs. 40%, P = 0.016) & [4.0 (0.5-9.5)% vs. 0 (0-3.0)%, P = 0.025]. The average T1 value was an independent predictor of acute LGE (ß 0.61, 95%CI 0.13 to 1.09; P = 0.015), extent of MVO (ß 0.22, 95%CI 0.03 to 0.41, P = 0.028) and final infarct size (ß 0.63, 95%CI 0.21 to 1.05; P = 0.005). Receiver-operating-characteristic analysis showed that T1 value of AAR obtained within 3-h, but not at 24-h, predicted large infarct size (LGE > 9.5%) with 100% positive predictive value at the optimal cut-off of 1400 ms (area-under-the-curve, AUC 0.88, P = 0.006). CONCLUSION: Hyper-acute T1 values of the AAR (within 3 h post PPCI, but not 24 h) predict a larger extent of MVO and infarct size at both 24 h and 6 months follow-up. Delayed CMR scanning for 24 h could not substitute the significant value of hyper-acute average T1 in determining infarct characteristics.


Asunto(s)
Imagen por Resonancia Cinemagnética , Miocardio/patología , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/terapia , Anciano , Medios de Contraste/administración & dosificación , Femenino , Humanos , Masculino , Meglumina/administración & dosificación , Persona de Mediana Edad , Compuestos Organometálicos/administración & dosificación , Intervención Coronaria Percutánea/efectos adversos , Valor Predictivo de las Pruebas , Prueba de Estudio Conceptual , Estudios Prospectivos , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología , Volumen Sistólico , Factores de Tiempo , Resultado del Tratamiento , Función Ventricular Izquierda
11.
Eur Heart J ; 40(24): 1920-1929, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-30859228

RESUMEN

AIMS: The co-transmitter neuropeptide-Y (NPY) is released during high sympathetic drive, including ST-elevation myocardial infarction (STEMI), and can be a potent vasoconstrictor. We hypothesized that myocardial NPY levels correlate with reperfusion and subsequent recovery following primary percutaneous coronary intervention (PPCI), and sought to determine if and how NPY constricts the coronary microvasculature. METHODS AND RESULTS: Peripheral venous NPY levels were significantly higher in patients with STEMI (n = 45) compared to acute coronary syndromes/stable angina ( n = 48) or with normal coronary arteries (NC, n = 16). Overall coronary sinus (CS) and peripheral venous NPY levels were significantly positively correlated (r = 0.79). STEMI patients with the highest CS NPY levels had significantly lower coronary flow reserve, and higher index of microvascular resistance measured with a coronary flow wire. After 2 days they also had significantly higher levels of myocardial oedema and microvascular obstruction on cardiac magnetic resonance imaging, and significantly lower ejection fractions and ventricular dilatation 6 months later. NPY (100-250 nM) caused significant vasoconstriction of rat microvascular coronary arteries via increasing vascular smooth muscle calcium waves, and also significantly increased coronary vascular resistance and infarct size in Langendorff hearts. These effects were blocked by the Y1 receptor antagonist BIBO3304 (1 µM). Immunohistochemistry of the human coronary microvasculature demonstrated the presence of vascular smooth muscle Y1 receptors. CONCLUSION: High CS NPY levels immediately after reperfusion correlate with microvascular dysfunction, greater myocardial injury, and reduced ejection fraction 6 months after STEMI. NPY constricts the coronary microcirculation via the Y1 receptor, and antagonists may be a useful PPCI adjunct therapy.


Asunto(s)
Vasos Coronarios/fisiopatología , Microcirculación/fisiología , Neuropéptido Y/sangre , Infarto del Miocardio con Elevación del ST/metabolismo , Síndrome Coronario Agudo/metabolismo , Síndrome Coronario Agudo/fisiopatología , Anciano , Animales , Velocidad del Flujo Sanguíneo/fisiología , Estudios de Casos y Controles , Constricción , Seno Coronario/metabolismo , Estenosis Coronaria/metabolismo , Edema/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Miocardio/patología , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Ratas , Infarto del Miocardio con Elevación del ST/fisiopatología , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología , Disfunción Ventricular Izquierda/fisiopatología
12.
Diabetologia ; 62(12): 2179-2187, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690986

RESUMEN

Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.


Asunto(s)
Exosomas/metabolismo , Vesículas Extracelulares/fisiología , Enfermedades Metabólicas/metabolismo , Adipocitos/metabolismo , Comunicación Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Macrófagos/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 38(11): 2718-2730, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354237

RESUMEN

Objective- Plaque macrophages are intricately involved in atherogenesis and plaque destabilization. We sought to identify functional pathways in human plaque macrophages that are differentially regulated in respect of (1) plaque stability and (2) lipid content. We hypothesized that differentially regulated macrophage gene sets would relate to genome-wide association study variants associated with risk of acute complications of atherosclerosis. Approach and Results- Forty patients underwent carotid magnetic resonance imaging for lipid quantification before endarterectomy. Carotid plaque macrophages were procured by laser capture microdissection from (1) lipid core and (2) cap region, in 12 recently symptomatic and 12 asymptomatic carotid plaques. Applying gene set enrichment analysis, a number of gene sets were found to selectively upregulate in symptomatic plaque macrophages, which corresponded to 7 functional pathways: inflammation, lipid metabolism, hypoxic response, cell proliferation, apoptosis, antigen presentation, and cellular energetics. Predicted upstream regulators included IL-1ß, TNF-α, and NF-κB. In vivo lipid quantification by magnetic resonance imaging correlated most strongly with the upregulation of genes of the IFN/ STAT1 pathways. Cross-interrogation of gene set enrichment analysis and meta-analysis gene set enrichment of variant associations showed lipid metabolism pathways, driven by genes coding for APOE and ABCA1/G1 coincided with known risk-associated SNPs (single nucleotide polymorphisms) from genome-wide association studies. Conclusions- Macrophages from recently symptomatic carotid plaques show differential regulation of functional gene pathways. There were additional quantitative relationships between plaque lipid content and key gene sets. The data show a plausible mechanism by which known genome-wide association study risk variants for atherosclerotic complications could be linked to (1) a relevant cellular process, in (2) the key cell type of atherosclerosis, in (3) a human disease-relevant setting.


Asunto(s)
Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/genética , Redes Reguladoras de Genes , Macrófagos/metabolismo , Placa Aterosclerótica , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Femenino , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Macrófagos/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Análisis de Componente Principal , Rotura Espontánea
14.
J Cardiovasc Magn Reson ; 20(1): 82, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30567572

RESUMEN

BACKGROUND: It has recently been suggested that myocardial oedema follows a bimodal pattern early post ST-segment elevation myocardial infarction (STEMI). Yet, water content, quantified using tissue desiccation, did not return to normal values unlike oedema quantified by cardiovascular magnetic resonance (CMR) imaging. We studied the temporal changes in the extent and intensity of injured myocardium using T1-mapping technique within the first week after STEMI. METHODS: A first group (n = 31) underwent 3 acute 3 T CMR scans (time-point (TP) < 3 h, 24 h and 6 days), including cine, native shortened modified look-locker inversion recovery T1 mapping, T2* mapping and late gadolinium enhancement (LGE). A second group (n = 17) had a single scan at 24 h with an additional T2-weighted sequence to assess the difference in the extent of area-at-risk (AAR) compared to T1-mapping. RESULTS: The mean T1 relaxation time value within the AAR of the first group was reduced after 24 h (P < 0.001 for TP1 vs.TP2) and subsequently increased at 6 days (P = 0.041 for TP2 vs.TP3). However, the extent of AAR quantified using T1-mapping did not follow the same course, and no change was detected between TP1&TP2 (P = 1.0) but was between TP2 &TP3 (P = 0.019). In the second group, the extent of AAR was significantly larger on T1-mapping compared to T2-weighted (42 ± 15% vs. 39 ± 15%, P = 0.025). No change in LGE was detected while microvascular obstruction and intra-myocardial haemorrhage peaked at different time points within the first week of reperfusion. CONCLUSION: The intensity of oedema post-STEMI followed a bimodal pattern; while the extent of AAR did not track the same course. This discrepancy has implications for use of CMR in this context and may explain the previously reported disagreement between oedema quantified by imaging and tissue desiccation.


Asunto(s)
Edema Cardíaco/diagnóstico por imagen , Imagen por Resonancia Cinemagnética , Miocardio/patología , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Anciano , Medios de Contraste/administración & dosificación , Edema Cardíaco/patología , Edema Cardíaco/fisiopatología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Meglumina/administración & dosificación , Persona de Mediana Edad , Compuestos Organometálicos/administración & dosificación , Valor Predictivo de las Pruebas , Estudios Prospectivos , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología , Factores de Tiempo
15.
Clin Proteomics ; 14: 22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642677

RESUMEN

BACKGROUND: Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation. METHODS: We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption. RESULTS: We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption. CONCLUSION: This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption.

17.
J Interv Cardiol ; 30(3): 264-273, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28370496

RESUMEN

OBJECTIVES: We conducted a meta-analysis of studies comparing deferred stenting strategy versus the conventional approach with immediate stenting in patients with ST elevation myocardial infarction. BACKGROUND: Deferring stent after mechanical flow restoration has been proposed as a strategy to reduce the risk of "no reflow" in patients with STEMI undergoing primary percutaneous coronary intervention (pPCI). Conflicting evidence is available currently, especially after the recent publication of three randomized clinical trials. METHODS: Searches in electronic databases were performed. Comparisons between the two strategies were performed for both hard clinical endpoints (all cause-mortality, cardiovascular mortality, unplanned revascularization, myocardial infarction and readmission for heart failure) and surrogate angiographic endpoints (TIMI flow < 3 and myocardial blush grade (MBG) < 2). RESULTS: Eight studies (three randomized and five non-randomized) were deemed eligible, accounting for a total of 2101 patients. No difference in terms of hard clinical endpoints was observed between deferred and immediate stenting (OR [95% CI]: 0.79 [0.54-1.15], for all-cause mortality; odds ratio (OR) [95% CI]: 0.79 [0.47-1.31] for cardiovascular mortality; OR [95% CI]: 0.95 [0.64-1.41] for myocardial infarction; OR [95% CI]: 1.37 [0.87-2.16], for unplanned revascularization and OR [95% CI]: 0.50 [0.21-1.17] for readmission for heart failure). Notably, the deferred stenting approach was associated with improved outcome of the surrogate angiographic endpoints (OR [95% CI]: 0.43 [0.18-0.99] of TIMI flow < 3 and OR [95% CI]: 0.25 [0.11-0.57] for MBG < 2. CONCLUSIONS: A deferred stenting strategy could be a feasible alternative to the conventional approach with immediate stenting in "selected" STEMI patients undergoing pPCI.


Asunto(s)
Fenómeno de no Reflujo , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST/cirugía , Stents , Humanos , Fenómeno de no Reflujo/diagnóstico , Fenómeno de no Reflujo/etiología , Fenómeno de no Reflujo/prevención & control , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/instrumentación , Intervención Coronaria Percutánea/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Stents/efectos adversos , Stents/clasificación , Resultado del Tratamiento
18.
Eur Heart J ; 36(45): 3165-77, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26254178

RESUMEN

AIMS: Primary percutaneous coronary intervention (PPCI) is the optimal treatment for patients presenting with ST-elevation myocardial infarction (STEMI). An elevated index of microcirculatory resistance (IMR) reflects microvascular function and when measured after PPCI, it can predict an adverse clinical outcome. We measured coronary microvascular function in STEMI patients and compared sequential changes before and after stent implantation. METHODS AND RESULTS: In 85 STEMI patients, fractional flow reserve, coronary flow reserve, and IMR were measured using a pressure wire (Certus, St Jude Medical, St Paul, MN, USA) immediately before and after stent implantation. Stenting significantly improved all of the measured parameters of coronary physiology including IMR from 67.7 [interquartile range (IQR): 56.2-95.8] to 36.7 (IQR: 22.7-59.5), P < 0.001. However, after stenting, IMR remained elevated (>40) in 28 (32.9%) patients. In 15 of these patients (17.6% of the cohort), only a partial reduction in IMR occurred and these patients were more likely to be late presenters (pain to wire time >6 h). The extent of jeopardized myocardium [standardized beta: -0.26 (IMR unit/Bypass Angioplasty Revascularization Investigation score unit), P: 0.009] and pre-stenting IMR [standardized beta: -0.34 (IMR unit), P: 0.001] predicted a reduction in IMR after stenting (ΔIMR = post-stenting IMR - pre-stenting IMR), whereas thrombotic burden [standardized beta: 0.24 (IMR unit/thrombus score unit), P: 0.01] and deployed stent volume [standardized beta: 0.26 (IMR unit/mm(3) of stent), P: 0.01] were associated with a potentially deleterious increase in IMR. CONCLUSION: Improved perfusion of the myocardium by stent deployment during PPCI is not universal. The causes of impaired microvascular function at the completion of PPCI treatment are heterogeneous, but can reflect a later clinical presentation and/or the location and extent of the thrombotic burden.


Asunto(s)
Circulación Coronaria/fisiología , Microcirculación/fisiología , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea , Stents , Anticoagulantes/uso terapéutico , Trombosis Coronaria/fisiopatología , Trombosis Coronaria/terapia , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/fisiopatología , Revascularización Miocárdica/métodos , Estudios Prospectivos , Resultado del Tratamiento , Resistencia Vascular/fisiología
19.
Eur Heart J ; 36(29): 1923-34, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25982896

RESUMEN

AIMS: Monocytes play critical roles in tissue injury and repair following acute myocardial infarction (AMI). Specifically targeting inflammatory monocytes in experimental models leads to reduced infarct size and improved healing. However, data from humans are sparse, and it remains unclear whether monocytes play an equally important role in humans. The aim of this study was to investigate whether the monocyte response following AMI is conserved between humans and mice and interrogate patterns of gene expression to identify regulated functions. METHODS AND RESULTS: Thirty patients (AMI) and 24 control patients (stable coronary atherosclerosis) were enrolled. Female C57BL/6J mice (n = 6/group) underwent AMI by surgical coronary ligation. Myocardial injury was quantified by magnetic resonance imaging (human) and echocardiography (mice). Peripheral monocytes were isolated at presentation and at 48 h. RNA from separated monocytes was hybridized to Illumina beadchips. Acute myocardial infarction resulted in a significant peripheral monocytosis in both species that positively correlated with the extent of myocardial injury. Analysis of the monocyte transcriptome following AMI demonstrated significant conservation and identified inflammation and mitosis as central processes to this response. These findings were validated in both species. CONCLUSIONS: Our findings show that the monocyte transcriptome is conserved between mice and humans following AMI. Patterns of gene expression associated with inflammation and proliferation appear to be switched on prior to their infiltration of injured myocardium suggesting that the specific targeting of inflammatory and proliferative processes in these immune cells in humans are possible therapeutic strategies. Importantly, they could be effective in the hours after AMI.


Asunto(s)
Leucocitos Mononucleares/patología , Infarto del Miocardio/patología , Anciano , Animales , Estudios de Casos y Controles , Proliferación Celular/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Inflamación/patología , Leucocitos Mononucleares/inmunología , Ligadura , Angiografía por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Fenotipo , Transcripción Genética/genética , Transcripción Genética/inmunología , Activación Transcripcional/fisiología
20.
Circulation ; 129(25): 2661-72, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24807872

RESUMEN

BACKGROUND: Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. METHODS AND RESULTS: A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II-mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45(+) inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II-induced vascular smooth muscle cell ROS production. CONCLUSIONS: These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II-mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.


Asunto(s)
Aneurisma de la Aorta/epidemiología , Disección Aórtica/epidemiología , Susceptibilidad a Enfermedades/epidemiología , Endotelio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Disección Aórtica/etiología , Disección Aórtica/metabolismo , Angiotensina II/efectos adversos , Animales , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/etiología , Susceptibilidad a Enfermedades/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA