Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390046

RESUMEN

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Asunto(s)
Encéfalo , Neurociencias , Animales , Humanos , Ratones , Ecosistema , Neuronas
2.
Artículo en Inglés | MEDLINE | ID: mdl-33768193

RESUMEN

Metabolomics involves the comprehensive measurement of metabolites from a biological system. The resulting metabolite profiles are influenced by genetics, lifestyle, biological stresses, disease, diet and the environment and therefore provides a more holistic biological readout of the pathological condition of the organism (Beger et al., 2016; Wishart, 2016). The challenge for metabolomics is that no single analytical platform can provide a truly comprehensive coverage of the metabolome. The most commonly used platforms are based on mass-spectrometry (MS) and nuclear magnetic resonance (NMR). Investigators are increasingly using both methods to increase the metabolite coverage. The challenge for this type of multi-platform approach is that the data structure may be very different in these two platforms. For example, NMR data may be reported as a list of spectral features, e.g., bins or peaks with arbitrary intensity units or more directly with named metabolites reported in concentration units ranging from micromolar to millimolar. Some MS approaches can also provide data in the form of identified metabolite concentrations, but given the superior sensitivity of MS, the concentrations can be several orders of magnitude lower than for NMR. Other MS approaches yield data in the form of arbitrary response units where the dynamic range can be more than 6 orders of magnitude. Importantly, the variability and reproducibility of the data may differ across platforms. Given the diversity of data structures (i.e., magnitude and dynamic range) integrating the data from multiple platforms can be challenging. This often leads investigators to analyze the datasets separately, which prevents the observation of potentially interesting relationships and correlations between metabolites detected on different platforms. Viime (VIsualization and Integration of Metabolomics Experiments) is an open-source, web-based application designed to integrate metabolomics data from multiple platforms. The workflow of Viime for data integration and visualization is shown in Figure 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA