Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420558

RESUMEN

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Enfermedades Musculares/genética , Fosfatidato Fosfatasa/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , Ácido Tauroquenodesoxicólico/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659145

RESUMEN

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Retículo Endoplásmico/ultraestructura , Femenino , Marcha , Locomoción/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/ultraestructura , Neuronas Motoras/metabolismo , Desnervación Muscular , Fibras Musculares de Contracción Lenta , Transducción de Señal
3.
Glia ; 69(1): 124-136, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32686211

RESUMEN

Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.


Asunto(s)
Células de Schwann , Animales , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Placa Motora , Proteínas Musculares , Vaina de Mielina , Simportadores/genética
4.
Hum Mol Genet ; 28(10): 1629-1644, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30624633

RESUMEN

Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/genética , Animales , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Humanos , Mutación/genética , Células-Madre Neurales , Ratas , Células Receptoras Sensoriales/patología
5.
FASEB J ; 33(1): 652-667, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028636

RESUMEN

Lipin 1 regulates glycerolipid homeostasis by acting as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride-synthesis pathway and by regulating transcription factor activity. Mutations in human lipin 1 are a common cause of recurrent rhabdomyolysis in children. Mice with constitutive whole-body lipin 1 deficiency have been used to examine mechanisms connecting lipin 1 deficiency to myocyte injury. However, that mouse model is confounded by lipodystrophy not phenocopied in people. Herein, 2 muscle-specific mouse models were studied: 1) Lpin1 exon 3 and 4 deletion, resulting in a hypomorphic protein without PAP activity, but which preserved transcriptional coregulatory function; and 2) Lpin1 exon 7 deletion, resulting in total protein loss. In both models, skeletal muscles exhibited a chronic myopathy with ongoing muscle fiber necrosis and regeneration and accumulation of phosphatidic acid and, paradoxically, diacylglycerol. Additionally, lipin 1-deficient mice had abundant, but abnormal, mitochondria likely because of impaired autophagy. Finally, these mice exhibited increased plasma creatine kinase following exhaustive exercise when unfed. These data suggest that mice lacking lipin 1-mediated PAP activity in skeletal muscle may serve as a model for determining the mechanisms by which lipin 1 deficiency leads to myocyte injury and for testing potential therapeutic approaches.-Schweitzer, G. G., Collier, S. L., Chen, Z., McCommis, K. S., Pittman, S. K., Yoshino, J., Matkovich, S. J., Hsu, F.-F., Chrast, R., Eaton, J. M., Harris, T. E., Weihl, C. C., Finck, B. N. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Músculo Esquelético/patología , Enfermedades Musculares/patología , Proteínas Nucleares/fisiología , Fosfatidato Fosfatasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Autofagia , Femenino , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/fisiología
6.
PLoS Biol ; 15(5): e1002605, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28549068

RESUMEN

In the vertebrate nervous system, myelination of axons for rapid impulse propagation requires the synthesis of large amounts of lipids and proteins by oligodendrocytes and Schwann cells. Myelin membranes are thought to be cell-autonomously assembled by these axon-associated glial cells. Here, we report the surprising finding that in normal brain development, a substantial fraction of the lipids incorporated into central nervous system (CNS) myelin are contributed by astrocytes. The oligodendrocyte-specific inactivation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), an essential coactivator of the transcription factor SREBP and thus of lipid biosynthesis, resulted in significantly retarded CNS myelination; however, myelin appeared normal at 3 months of age. Importantly, embryonic deletion of the same gene in astrocytes, or in astrocytes and oligodendrocytes, caused a persistent hypomyelination, as did deletion from astrocytes during postnatal development. Moreover, when astroglial lipid synthesis was inhibited, oligodendrocytes began incorporating circulating lipids into myelin membranes. Indeed, a lipid-enriched diet was sufficient to rescue hypomyelination in these conditional mouse mutants. We conclude that lipid synthesis by oligodendrocytes is heavily supplemented by astrocytes in vivo and that horizontal lipid flux is a major feature of normal brain development and myelination.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Astrocitos/patología , Astrocitos/ultraestructura , Biomarcadores/metabolismo , Cruzamientos Genéticos , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Dieta Alta en Grasa , Acido Graso Sintasa Tipo I/metabolismo , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mutación , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/patología , Oligodendroglía/ultraestructura , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
7.
Brain ; 142(5): 1227-1241, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30907403

RESUMEN

Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2-/- mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2-/- mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2-/- mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2-/- littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2-/- mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2-/- mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2-/- mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Modelos Animales de Enfermedad , Terapia Genética/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Enfermedad de Charcot-Marie-Tooth/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones , Ratones Noqueados , Ratones Transgénicos
8.
J Physiol ; 597(3): 889-901, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30511745

RESUMEN

KEY POINTS: Lipin1 is critical for skeletal muscle development. Lipin1 regulates MyoD and myocyte-specific enhancer factor 2C (MEF2c) expression via the protein kinase C (PKC)/histone deacetylase 5-mediated pathway. Inhibition of PKCµ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c expression. ABSTRACT: Our previous characterization of global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. The present study using cell type-specific Myf5-cre;Lipin1fl/fl conditional knockout mice (Lipin1Myf5cKO ) shows that lipin1 is a major determinant of SM development. Lipin1 deficiency induced reduced muscle mass and myopathy. Our results from lipin1-deficient myoblasts suggested that lipin1 regulates myoblast differentiation via the protein kinase Cµ (PKCµ)/histone deacetylase 5 (HDAC5)/myocyte-specific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads to the suppression of PKC isoform activities, as well as inhibition of the downstream target of PKCµ, class II deacetylase HDAC5 nuclear export, and, consequently, inhibition of MEF2c and MyoD expression in the SM of lipin1Myf5cKO mice. Restoration of diacylglycerol-mediated signalling in lipin1 deficient myoblasts by phorbol 12-myristate 13-acetate transiently activated PKC and HDAC5, and upregulated MEF2c expression. Our findings provide insights into the signalling circuitry that regulates SM development, and have important implications for developing intervention aimed at treating muscular dystrophy.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Fosfatidato Fosfatasa/metabolismo , Animales , Diferenciación Celular/fisiología , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Mioblastos/fisiología , Fosforilación/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
9.
Arterioscler Thromb Vasc Biol ; 38(2): 324-334, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217509

RESUMEN

OBJECTIVE: Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS: We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/ßII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS: Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/ßII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.


Asunto(s)
Aorta/enzimología , Enfermedades de la Aorta/enzimología , Aterosclerosis/enzimología , Mediadores de Inflamación/metabolismo , Inflamación/enzimología , Lipoproteínas LDL/sangre , Macrófagos/enzimología , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Espumosas/enzimología , Células Espumosas/patología , Inflamación/genética , Inflamación/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosfatidato Fosfatasa/deficiencia , Fosfatidato Fosfatasa/genética , Placa Aterosclerótica , Proteína Quinasa C beta/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Células RAW 264.7 , Transducción de Señal
10.
Arch Toxicol ; 93(6): 1649-1664, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30993381

RESUMEN

Brain susceptibility to a neurotoxic insult may be increased in a compromised health status, such as metabolic syndrome. Both metabolic syndrome and exposure to trimethyltin (TMT) are known to promote neurodegeneration. In combination the two factors may elicit additive or compensatory/regulatory mechanisms. Combined effects of TMT exposure (0.5-1 µM) and mimicked metabolic syndrome-through modulation of insulin and glucocorticoid (GC) levels-were investigated in three models: tridimensional rat brain cell cultures for neuron-glia effects; murine microglial cell line BV-2 for a mechanistic analysis of microglial reactivity; and db/db mice as an in vivo model of metabolic syndrome. In 3D cultures, low insulin condition significantly exacerbated TMT's effect on GABAergic neurons and promoted TMT-induced neuroinflammation, with increased expression of cytokines and of the regulator of intracellular GC activity, 11ß-hydroxysteroid dehydrogenase 1 (11ß-Hsd1). Microglial reactivity increased upon TMT exposure in medium combining low insulin and high GC. These results were corroborated in BV-2 microglial cells where lack of insulin exacerbated the TMT-induced increase in 11ß-Hsd1 expression. Furthermore, TMT-induced microglial reactivity seems to depend on mineralocorticoid receptor activation. In diabetic BKS db mice, a discrete exacerbation of TMT neurotoxic effects on GABAergic neurons was observed, together with an increase of interleukin-6 (IL-6) and of basal 11ß-Hsd1 expression as compared to controls. These results suggest only minor additive effects of the two brain insults, neurotoxicant TMT exposure and metabolic syndrome conditions, where 11ß-Hsd1 appears to play a key role in the regulation of neuroinflammation and of its protective or neurodegenerative consequences.


Asunto(s)
Glucocorticoides/metabolismo , Inflamación/metabolismo , Secreción de Insulina/efectos de los fármacos , Degeneración Nerviosa/metabolismo , Compuestos de Trimetilestaño/toxicidad , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Citocinas/biosíntesis , Técnicas In Vitro , Inflamación/inducido químicamente , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos , Degeneración Nerviosa/inducido químicamente , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/efectos de los fármacos , Reproducibilidad de los Resultados
12.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
13.
Cell Mol Neurobiol ; 38(2): 487-496, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28447247

RESUMEN

The protein component of the myelin layer is essential for all aspects of peripheral nerves, and its deficiency can lead to structural and functional impairment. The presence of peripheral myelin protein 2 (P2, PMP2, FABP8, M-FABP) in Schwann cells has been known for decades and shown recently to be involved in the lipid homeostasis in the peripheral neural system. However, its precise role during de- and remyelination has yet to be elucidated. To this end, we assessed remyelination after sciatic nerve crush injury in vivo, and in an experimental de/remyelination ex vivo myelinating culture model in P2-deficient (P2 -/- ) and wild-type (WT) animals. In vivo, the nerve crush paradigm revealed temporal structural and functional changes in P2 -/- mice as compared to WT animals. Concomitantly, P2 -/- DRG cultures demonstrated the presence of shorter internodes and enlarged nodes after ex vivo de/remyelination. Together, these data indicate that P2 may play a role in remyelination of the injured peripheral nervous system, presumably by affecting the nodal and internodal configuration.


Asunto(s)
Proteína P2 de Mielina/fisiología , Remielinización/fisiología , Neuropatía Ciática/patología , Animales , Técnicas de Cocultivo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conducción Nerviosa/fisiología , Células de Schwann/patología , Células de Schwann/fisiología , Neuropatía Ciática/metabolismo
14.
Muscle Nerve ; 57(5): 749-755, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28981955

RESUMEN

INTRODUCTION: This study analyzes and describes atypical presentations of Charcot-Marie-Tooth disease type 4C (CMT4C). METHODS: We present clinical and physiologic features of 5 patients with CMT4C caused by biallelic private mutations of SH3TC2. RESULTS: All patients manifested scoliosis, and nerve conduction study indicated results in the demyelinating range. All patients exhibited signs of motor impairment within the first years of life. We describe 2 or more different genetic diseases in the same patient, atypical presentations of CMT, and 3 new mutations in CMT4C patients. DISCUSSION: A new era of unbiased genetic testing has led to this small case series of individuals with CMT4C and highlights the recognition of different genetic diseases in CMT4C patients for accurate diagnosis, genetic risk identification, and therapeutic intervention. The phenotype of CMT4C, in addition, appears to be enriched by a number of features unusual for the broad CMT category. Muscle Nerve 57: 749-755, 2018.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mutación/genética , Proteínas/genética , Adolescente , Adulto , Animales , Animales Recién Nacidos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Enfermedades Desmielinizantes/etiología , Femenino , Pruebas Genéticas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Escoliosis/etiología
15.
PLoS Genet ; 11(4): e1005115, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25860513

RESUMEN

Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.


Asunto(s)
Axones/metabolismo , Señalización del Calcio , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Axones/patología , Axones/fisiología , Canales de Calcio/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Citoesqueleto/metabolismo , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas del Tejido Nervioso/metabolismo
16.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562927

RESUMEN

The neuromuscular junction (NMJ) appears to be a site of pathology in a number of peripheral nerve diseases. Charcot-Marie-Tooth (CMT) 4C is an autosomal recessive, early onset, demyelinating neuropathy. Numerous mutations in the SH3TC2 gene have been shown to underlie the condition often associated with scoliosis, foot deformities, and reduced nerve conduction velocities. Mice with exon 1 of the Sh3tc2 gene knocked out demonstrate many of the features seen in patients. To determine if NMJ pathology is contributory to the pathomechanisms of CMT4C we examined NMJs in the gastrocnemius muscle of SH3TC2-deficient mice. In addition, we performed proteomic assessment of the sciatic nerve to identify protein factors contributing to the NMJ alterations and the survival of demyelinated axons. Morphological and gene expression analysis of NMJs revealed a lack of continuity between the pre- and post-synaptic apparatus, increases in post-synaptic fragmentation and dispersal, and an increase in expression of the gamma subunit of the acetylcholine receptor. There were no changes in axonal width or the number of axonal inputs to the NMJ. Proteome investigations of the sciatic nerve revealed altered expression of extracellular matrix proteins important for NMJ integrity. Together these observations suggest that CMT4C pathology includes a compromised NMJ even in the absence of changes to the innervating axon.


Asunto(s)
Proteínas Portadoras , Enfermedad de Charcot-Marie-Tooth , Músculo Esquelético , Mutación , Unión Neuromuscular , Nervio Ciático , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Exones , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Mutantes , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología
17.
J Neurosci ; 36(16): 4506-21, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098694

RESUMEN

The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatmentin vivo Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT: Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains uncertain. This work reveals that Akt controls several key steps of the PNS myelination. First, its activity promotes membrane production and axonal wrapping independent of a transcriptional effect. In myelinated axons, it also enhances myelin thickness through the mTOR pathway. Finally, sustained Akt activation in Schwann cells leads to hypermyelination/dysmyelination, mimicking some features present in neuropathies, such as hereditary neuropathy with liability to pressure palsies or demyelinating forms of Charcot-Marie-Tooth disease. Together, these data demonstrate the role of Akt in regulatory mechanisms underlying axonal wrapping and myelination in the PNS.


Asunto(s)
Axones/fisiología , Vaina de Mielina/fisiología , Proteína Oncogénica v-akt/fisiología , Nervio Ciático/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/ultraestructura , Nervios Periféricos/fisiología , Nervios Periféricos/ultraestructura , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Nervio Ciático/ultraestructura
18.
Hum Mol Genet ; 24(20): 5677-86, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188006

RESUMEN

Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.


Asunto(s)
Axones/patología , Temblor Esencial/genética , Glicoproteínas de Membrana/genética , Mutación Missense , Oligodendroglía/patología , Adulto , Animales , Análisis Mutacional de ADN , Temblor Esencial/metabolismo , Temblor Esencial/fisiopatología , Exoma , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Persona de Mediana Edad , Linaje , Transporte de Proteínas , Adulto Joven , Pez Cebra/metabolismo
19.
J Neurosci ; 35(10): 4151-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762662

RESUMEN

Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Actinas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Ácido Láctico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/clasificación , Transportadores de Ácidos Monocarboxílicos/genética , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/genética , Proteínas de Neurofilamentos/metabolismo , Nervios Periféricos/citología , Ratas , Ratas Sprague-Dawley , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos
20.
Brain ; 138(Pt 4): 875-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25678561

RESUMEN

Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.


Asunto(s)
Retículo Endoplásmico/genética , Mitocondrias/genética , Enfermedad de la Neurona Motora/genética , Receptores sigma/genética , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Ratas , Receptor Cross-Talk , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA