Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Dis ; 106(12): 3040-3049, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35596246

RESUMEN

A serious rust infection present in 2014 and 2015 on the dominant grass species (Leymus chinensis) in the Hulunber grassland of Inner Mongolia, China, and also present on three other grass species (Agropyron cristatum [wheat grass], Bromus inermis, and Festuca ovina) was investigated. Field surveys, laboratory determination of morphological characteristics, pathogenicity tests, and molecular identification methods were integrated to identify two rust-causing pathogens on L. chinensis. It was found that Puccinia elymi was the major pathogen of L. chinensis, and also infected A. cristatum and F. ovina. This is the first report of P. elymi on A. cristatum in China. P. striiformis caused stripe rust on L. chinensis and B. inermis. The incidence and severity of rust infection increased through the growing season, presumably from asexual spread by urediniospores, and was higher on grass species phylogenetically more closely related to common crop hosts of the pathogens. High host grass density and presence of a potential alternate host for P. elymi, Thalictrum squarrosum, were two further factors promoting rust incidence. These results provide insight into ecological factors linked to the rust epidemic and provide a theoretical basis for the formulation of control strategies.


Asunto(s)
Basidiomycota , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Pradera , Basidiomycota/genética , Virulencia
2.
Plant Dis ; 103(7): 1565-1576, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31033401

RESUMEN

Verticillium wilt caused by Verticillium alfalfae results in severe production losses in alfalfa crops and is a Class A quarantined disease in China. During 2015 to 2017, 365 alfalfa fields from 21 locations in six provinces were surveyed, and 45 fields from three closely located sites in Gansu, China were found to have alfalfa plants with symptoms typical of Verticillium wilt, with disease incidence of 12.6 to 53.6%. Isolates were identified to species using morphological characteristics and a maximum likelihood phylogeny of the concatenated partial sequences of actin, elongation factor, glyceraldehyde-3-phosphate dehydrogenase, and tryptophan synthase gene regions of Verticillium isolates. Isolation incidence was 93.9% from roots, 71.7% from stems, 66.1% from petioles, and 32.2% from leaves of field-infected plants, indicative of systemic disease and sporadic distribution of this pathogen. In greenhouse tests, the pathogen infected seedlings and colonized vascular tissues when inoculated on seeds, on root tips, in soil, or in injured, but not uninjured, aerial tissues, causing systemic symptoms like those in the field and significant losses. Pathogenicity testing also revealed that five locally grown perennial legumes (stylo, milkvetch, sainfoin, white clover, and red clover) could host V. alfalfae, with a high virulence to milkvetch, sainfoin, and stylo. This study confirmed that V. alfalfae has become established in some regions of Gansu, China and that is a risk to the alfalfa industry in China.


Asunto(s)
Medicago sativa , Verticillium , Virulencia , China , Genes Fúngicos/genética , Especificidad del Huésped , Medicago sativa/microbiología , Enfermedades de las Plantas/microbiología , Verticillium/clasificación , Verticillium/crecimiento & desarrollo , Verticillium/patogenicidad , Verticillium/fisiología , Virulencia/genética
3.
Mycorrhiza ; 28(2): 159-169, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29274039

RESUMEN

Leaf spot of perennial ryegrass (Lolium perenne) caused by Bipolaris sorokiniana is an important disease in temperate regions of the world. We designed this experiment to test for the combined effects of the arbuscular mycorrhizal (AM) fungus Claroideoglomus etunicatum and the grass endophyte fungus Epichloë festucae var. lolii on growth and disease occurrence in perennial ryegrass. The results show that C. etunicatum increased plant P uptake and total dry weight and that this beneficial effect was slightly enhanced when in association with the grass endophyte. The presence in plants of both the endophyte and B. sorokiniana decreased AM fungal colonization. Plants inoculated with B. sorokiniana showed the typical leaf spot symptoms 2 weeks after inoculation and the lowest disease incidence was with plants that were host to both C. etunicatum and E. festucae var. lolii. Plants with these two fungi had much higher activity of peroxidases (POD), superoxide dismutase (SOD) and catalase (CAT) and lower values of malondialdehyde (MDA) and hydrogen peroxide (H2O2). The AM fungus C. etunicatum and the grass endophyte fungus E. festucae var. lolii have the potential to promote perennial ryegrass growth and resistance to B. sorokiniana leaf spot.


Asunto(s)
Ascomicetos/fisiología , Lolium/crecimiento & desarrollo , Lolium/microbiología , Micorrizas/fisiología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad , Epichloe/fisiología , Estrés Oxidativo
4.
Mycologia ; 109(1): 153-161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28402784

RESUMEN

Asexual cool-season grass endophytes of the genus Epichloë (Ascomycota: Clavicipitaceae) are strictly vertically disseminated. The hosts of these mutualistic fungi express no symptoms during the fungal lifecycle that takes place entirely within the plant, while their hosts receive beneficial outcomes. These fungi are distributed in two major locations within the mature seeds of their hosts; namely, within the embryo (including the scutellum, coleoptile, plumule, radicle, and coleorhiza tissues) and between the aleurone and pericarp layers, with the latter hyphae playing no role in transmission of the fungus to the next plant generation. Conflicting evidence remains in the literature on the timing of embryo colonization. In a detailed investigation, utilizing confocal microscopy to observe the distribution of Epichloë coenophiala strain AR601 in tall fescue (Lolium arundinaceum), we tracked endophyte hyphal colonization in the ovary (pre-fertilization) through to the fully mature seed stage. Confocal microscopy images revealed that at the early and mature developmental stages of the embryo sac, before host grass fertilization, there were large quantities of endophyte mycelium present, especially around the antipodal cells, indicating that this endophyte enters the embryo sac before the fertilization stage. After host fertilization, fungal hyphae could be seen in the true embryo and early nonstarchy endosperm. Understanding the mechanisms of transmission to the seed is important for commercial seed producers and end users.


Asunto(s)
Endófitos/crecimiento & desarrollo , Epichloe/crecimiento & desarrollo , Festuca/microbiología , Simbiosis , Endófitos/citología , Epichloe/citología , Microscopía Confocal , Micelio/citología , Micelio/crecimiento & desarrollo , Semillas/microbiología
5.
Plant Dis ; 99(1): 87-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30699744

RESUMEN

A crown and root rot complex was detected in the alfalfa (Medicago sativa 'Longdong') fields of Huanxian County. The symptoms of the diseased plants were characterized, and 11 fungal species were obtained from the roots. These fungi included isolates that resembled the genus Microdochium. An isolate of this type, designated MP313, was proven to infect alfalfa, fulfilling Koch's postulates. Isolate MP313 was examined by microscopy and the morphological characteristics indicated that it was similar to members of the genus Microdochium. Sequence analyses of the 28S large subunit as well as the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) of MP313 revealed 98 to 100% similarity to the corresponding regions of M. tabacinum. A polymerase chain reaction assay based on the ITS region of the rDNA was developed to amplify a 304-bp fragment from DNA concentrations as low as 20 fg/µl, which was sensitive enough to detect isolate MP313 in diseased root samples. Taken together, these results confirmed that M. tabacinum was one of a complex of fungi associated with crown and root rot in the alfalfa samples collected in Gansu Province. This is the first report of M. tabacinum being a pathogen of alfalfa in China.

7.
Microbiol Spectr ; : e0135022, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786621

RESUMEN

The seed-borne microbiota and seed metabolites of the grass Achnatherum inebrians, either host to Epichloë gansuensis (endophyte infected [EI]) or endophyte free (EF), were investigated. This study determined the microbial communities both within the seed (endophytic) and on the seed surface (epiphytic) and of the protective glumes by using Illumina sequencing technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. In addition, metabolites of seeds and glumes were detected using liquid chromatography-mass spectrometry (LC-MS). Unlike with the seeds of EF plants, the presence of E. gansuensis resulted in significant changes in the content of 108 seed and 31 glume metabolites. A total of 319 significant correlations occurred between seed-borne microbiota and seed metabolites; these correlations comprised 163 (147 bacterial and 16 fungal) positive correlations and 156 (136 bacterial and 20 fungal) negative correlations. Meanwhile, there were 42 significant correlations between glume microbiota and metabolites; these correlations comprised 28 positive (10 bacterial and 18 fungal) and 14 negative (9 bacterial and 5 fungal) correlations. The presence of E. gansuensis endophyte altered the communities and diversities of seed-borne microbes and altered the composition and content of seed metabolites, and there were many close and complex relationships between microbes and metabolites. IMPORTANCE The present study was to investigate seed-borne microbiota and seed metabolites in Achnatherum inebrians using high-throughput sequencing and LC-MS technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. Compared with endophyte-free plants, the content of 108 seed and 31 glume metabolites of endophyte-infected plants was significantly changed. There were 319 significant correlations between seed-borne microbiota and seed metabolites and 42 significant correlations between glume microbiota and metabolites.

8.
J Fungi (Basel) ; 8(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422022

RESUMEN

Photosynthesis is essential for the growth of all green plants, and the presence of an Epichloë endophyte enhances the photosynthesis of Achnatherum inebrians (drunken horse grass, DHG), including when it is under attack by fungal pathogens. However, few studies have examined the mechanism of the increased photosynthetic activity at the molecular level of A. inebrians when it is under pathogen stress. The present study investigated the effects of the presence of the Epichloë endophyte on the net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate of DHG plants under a Blumeria graminis infection condition, and we compared the transcriptomes using RNA sequencing. The results showed that the photosynthetic rate of Epichloë endophyte-infected (E+) plants was higher under the B. graminis infection condition, and also without this pathogen, when it was compared with Epichloë endophyte-free (E-) plants. The E+ plants uninfected with B. graminis had 15 up-regulated unigenes that are involved in photosynthesis which were compared to the E- plants that were uninfected with this pathogen. This suggests that the presence of an Epichloë endophyte up-regulates the genes that are involved in the process of photosynthesis.

9.
iScience ; 25(4): 104144, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402863

RESUMEN

Upon exposure to the prevailing environment, leaves become increasingly colonized by fungi and bacteria located on the surface (epiphytic) or within (endophytic) the leaves. Many cool season grasses, including Achnatherum inebrians, host a seed-borne, intercellular, mutualistic Epichloë fungal endophyte, the growth of which is synchronized with the host grass. A study utilizing illumina sequencing was used to examine the epiphytic and endophytic microbial communities in Epichloë endophyte-infected and endophyte-free A. inebrians plants growing under hot dry field conditions. The presence of Epichloë endophyte increased the Shannon and decreased Simpson diversity of bacterial and fungal communities. Sphingomonas and Hymenobacter bacteria and Filobasidium and Mycosphaerella fungi were growing largely epiphytically, whereas Methylobacterium, Escherichia-Shigella, and the fungus Blumeria were mostly found within leaves with the location of colonization influenced by the Epichloë endophyte. In addition, leaf metabolites in Epichloë-infected and Epichloë-free leaves were examined using LC/MS. Epichloë was significantly correlated with 132 metabolites.

11.
J Fungi (Basel) ; 7(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34436179

RESUMEN

The present study was designed to explore the effects of the endophyte Epichloë gansuensis on gene expression related to plant hormone biosynthesis and response pathways and the content of salicylic acid (SA) and jasmonic acid (JA) hormones of Achnatherum inebrians, under different moisture conditions. Through a pot experiment and transcriptome analysis, we found a total of 51 differentially expressed genes (DEGs) related to hormone biosynthesis and response pathways, including 12 auxin related genes, 8 cytokinin (CTK) related genes, 3 gibberellin (GA) related genes, 7 abscisic acid (ABA) related genes, 7 ethylene (ET) related genes, 12 JA related genes and 4 SA related genes. Furthermore, key genes of JA and SA biosynthesis and response pathways, such as LOX2S, AOS, OPR, ACX, JMT, JAZ, PAL, NPR1, TGA and PR-1, showed different degrees of upregulation or downregulation. Under 60% soil moisture content, the JA content of endophyte-free (EF) A. inebrians was significantly (p < 0.05) higher than that of endophyte-infected (EI) A. inebrians. Under 30% and 60% soil moisture content, the SA content of EF A. inebrians was significantly (p < 0.05) higher than that of EI A. inebrians. SA content of EI A. inebrians under 30% and 60% soil moisture content was significantly (p < 0.05) higher than that under 15% soil moisture content. With both EI and EF plants, the SA and JA levels, respectively, are very similar at 15% soil moisture content. This study has revealed that E. gansuensis differentially activated plant hormone synthesis and signal transduction pathways of A. inebrians plants under different soil moisture availability.

12.
J Fungi (Basel) ; 7(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067720

RESUMEN

In the long-term evolutionary process, Achnatherum inebrians and seed-borne endophytic fungi, Epichloë gansuensis, formed a mutually beneficial symbiosis relationship, and Epichloë gansuensis has an important biological role in improving the tolerance of host grasses to abiotic stress. In this work, we first assessed the effects of Epichloë gansuensis on dry weight, the content of C, N, P and metal ions, and metabolic pathway of amino acids, and phosphorus utilization efficiency (PUE) of Achnatherum inebrians at low P stress. Our results showed that the dry weights, the content of alanine, arginine, aspartic acid, glycine, glutamine, glutamic acid, L-asparagine, lysine, phenylalanine, proline, serine, threonine, and tryptophan were higher in leaves of Epichloë gansuensis-infected (E+) Achnatherum inebrians than Epichloë gansuensis-uninfected (E-) Achnatherum inebrians at low P stress. Further, Epichloë gansuensis increased C content of roots compared to the root of E- plant at 0.01 mM P and 0.5 mM P; Epichloëgansuensis increased K content of leaves compared to the leaf of E- plant at 0.01 mM P and 0.5 mM P. Epichloëgansuensis reduced Ca content of roots compared to the root of E- plant at 0.01 mM P and 0.5 mM P; Epichloë gansuensis reduced the content of Mg and Fe in leaves compared to the leaf of E- plant at 0.01 mM P and 0.5 mM P. In addition, at low P stress, Epichloë gansuensis most probably influenced aspartate and glutamate metabolism; valine, leucine, and isoleucine biosynthesis in leaves; and arginine and proline metabolism; alanine, aspartate, and glutamate metabolism in roots. Epichloë gansuensis also affected the content of organic acid and stress-related metabolites at low P stress. In conclusion, Epichloë gansuensis improves Achnatherum inebrians growth at low P stress by regulating the metabolic pathway of amino acids, amino acids content, organic acid content, and increasing PUE.

13.
Sci China Life Sci ; 64(3): 452-465, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32430851

RESUMEN

Salt stress negatively affects plant growth, and the fungal endophyte Epichloëgansuensis increases the tolerance of its host grass species, Achnatherum inebrians, to abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) H+-ATPase activity of Achnatherum inebrians plants under varying NaCl concentrations. Our results showed that the presence of E. gansuensis increased G6PDH, PM H+-ATPase, superoxide dismutase and catalase activity to decrease O2•-, H2O2 and Na+ contents in A. inebrians under NaCl stress, resulting in enhanced salt tolerance. In addition, the PM NADPH oxidase activity and NADPH/NADP+ ratios were all lower in A. inebrians with E. ganusensis plants than A. inebrians plants without this endophyte under NaCl stress. In conclusion, E. gansuensis has a positive role in improving host grass yield under NaCl stress by enhancing the activity of G6PDH and PM H+-ATPase to decrease ROS content. This provides a new way for the selection of stress-resistant and high-quality forage varieties by the use of systemic fungal endophytes.


Asunto(s)
Endófitos/enzimología , Epichloe/enzimología , Glucosafosfato Deshidrogenasa/metabolismo , Poaceae/enzimología , ATPasas de Translocación de Protón/metabolismo , Cloruro de Sodio/metabolismo , Membrana Celular
14.
J Fungi (Basel) ; 7(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436172

RESUMEN

The study of the contribution of the plant defence hormones, salicylic acid (SA) and jasmonic acid (JA), in the resistance against pathogens of plants associated with Epichloë fungal endophytes has been scanty. We hypothesised that Epichloë spp., capable of inducing host plant SA-dependent defences, would increase the levels of plant resistance against biotrophic pathogens. Plants of Achnatherum inebrians, with and without the fungal endophyte Epichloë gansuensis, were inoculated with the biotrophic fungal pathogen Blumeria graminis. We measured the status of plant defences (associated with SA and JA signalling pathways) and the levels of resistance to the pathogen. Plants associated with the endophyte showed less disease symptoms caused by the biotrophic pathogen than plants without the endophyte. In agreement with our hypothesis, the Epichloë endophyte increased the plant production of SA and enhanced the expression levels of plant genes of synthesis and response to the SA hormone. The elevated expression of SA-related genes coding for putative plant enzymes with anti-fungal activities promoted by the endophyte may explain the enhanced resistance to the pathogen. The present study highlights that interaction between the plant immune system and Epichloë fungal endophytes can contribute significantly to the resistance of endophyte-symbiotic plants against pathogens.

15.
Front Microbiol ; 11: 747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362891

RESUMEN

This study was conducted to explore effects of the systemic fungal endophyte Epichloë gansuensis on root and rhizosphere soil bacterial diversity of Achnatherum inebrians host plants growing under different moisture conditions. Soil properties of different treatments were compared using standard techniques. A total of 4371379 16S rRNA gene sequences were obtained and assigned to 5025 operational taxonomic units (OTUs). These OTUs in roots and rhizosphere soil were divided into 13 and 17 phyla, respectively, and the Actinobacteria and Proteobacteria were the most abundant phyla both in roots and rhizosphere soil. Shannon diversity and Chao1 richness index of bacteria in rhizosphere soil was significantly higher than in roots. E. gansuensis decreased the Shannon diversity of the root-associated bacterial community, and increased Shannon diversity and Chao1 richness index of the rhizosphere soil bacterial community of A. inebrians. Meanwhile, Chao1 richness of the rhizosphere soil bacterial community of A. inebrians significantly increased with the increase of the soil moisture level. Structural equation modeling also emphasized that E. gansuensis decreased the diversity of the root-associated bacterial community and increased the diversity of the rhizosphere soil bacterial community through decreasing soil available N. Additionally, soil moisture increased the diversity of the rhizosphere soil bacterial community through increased soil pH, C/N, and NN, and decreased soil AP. The E. gansuensis endophyte and soil moisture effects on root and rhizosphere soil bacterial diversity were likely to be from responses to modifications of the rhizosphere soil properties.

16.
J Agric Food Chem ; 68(26): 6944-6955, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32551564

RESUMEN

The past decade has witnessed significant advances in understanding the interaction between grasses and systemic fungal endophytes of the genus Epichloë, with evidence that plants have evolved multiple strategies to cope with abiotic stresses by reprogramming physiological responses. Soil nutrients directly affect plant growth, while soil microbes are also closely connected to plant growth and health. Epichloë endophytes could affect soil fertility by modifying soil nutrient contents and soil microbial diversity. Therefore, we analyze recent advances in our understanding of the role of Epichloë endophytes under the various abiotic stresses and the role of grass-Epichloë symbiosis on soil fertility. Various cool-season grasses are infected by Epichloë species, which contribute to health, growth, persistence, and seed survival of host grasses by regulating key systems, including photosynthesis, osmotic regulation, and antioxidants and activity of key enzymes of host physiology processes under abiotic stresses. The Epichloë endophyte offers significant prospects to magnify the crop yield, plant resistance, and food safety in ecological systems by modulating soil physiochemical properties and soil microbes. The enhancing resistance of host grasses to abiotic stresses by an Epichloë endophyte is a complex manifestation of different physiological and biochemical events through regulating soil properties and soil microbes by the fungal endophyte. The Epichloë-mediated mechanisms underlying regulation of abiotic stress responses are involved in osmotic adjustment, antioxidant machinery, photosynthetic system, and activity of key enzymes critical in developing plant adaptation strategies to abiotic stress. Therefore, the Epichloë endophytes are an attractive choice in increasing resistance of plants to abiotic stresses and are also a good candidate for improving soil fertility and regulating microbial diversity to improve plant growth.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Poaceae/microbiología , Endófitos/genética , Epichloe/genética , Poaceae/crecimiento & desarrollo , Poaceae/inmunología , Suelo/química
17.
Fungal Genet Biol ; 45(2): 84-93, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17919950

RESUMEN

A fundamental hallmark of fungal growth is that vegetative hyphae grow exclusively by extension at the hyphal tip. However, this model of apical growth is incompatible with endophyte colonization of grasses by the symbiotic Neotyphodium and Epichloë species. These fungi are transmitted through host seed, and colonize aerial tissues that develop from infected shoot apical meristems of the seedling and tillers. We present evidence that vegetative hyphae of Neotyphodium and Epichloë species infect grass leaves via a novel mechanism of growth, intercalary division and extension. Hyphae are attached to enlarging host cells, and cumulative growth along the length of the filament enables the fungus to extend at the same rate as the host. This is the first evidence of intercalary growth in fungi and directly challenges the centuries-old model that fungi grow exclusively at hyphal tips. A new model describing the colonization of grasses by clavicipitaceous endophytes is described.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Lolium/microbiología , Ascomicetos/ultraestructura , Hifa/crecimiento & desarrollo , Hifa/ultraestructura , Lolium/fisiología , Microscopía Confocal , Hojas de la Planta/microbiología , Simbiosis
18.
Mycology ; 9(3): 223-232, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30181928

RESUMEN

Powdery mildew caused by Erysiphe pisi is a major factor that affects the growth of standing milkvetch (Astragalus adsurgens). As arbuscular mycorrhizal fungi (AMF) have shown to be enhancing the resistance of plants to biotrophic pathogens such as powdery mildew, a study was carried out to look at the effects of three AMF, either singularly or in combination, on the growth of standing milkvetch and susceptibility to E. pisi. The results showed that the presence of AMF enhanced the growth of standing milkvetch even though their presence in the roots increased susceptibility to this foliage pathogen compared with plants having no AMF. This increase in growth of plants with severe infection of powdery mildew was especially surprising as leaves contained lower levels of chlorophyll than plants without AMF and had a greater concentration of malondialdehyde, an indicator of the damage of cell membrane. The effects on the extent of growth and powdery mildew enhancement differed inconsistently with the type of AMF in roots. The effects on growth and powdery mildew were not related to intensity of AMF colonisation. The peroxidase (POD) was consistently higher activity (15% to 72%) in plants with AMF than plants without them.

19.
J Agric Food Chem ; 66(16): 4022-4031, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648822

RESUMEN

The systemic fungal endophyte of the grass Achnatherum inebrians, Epichloë gansuensis, has important roles in enhancing resistance to biotic and abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on nitrogen metabolism, nitrogen use efficiency, and stoichiometry of A. inebrians under varying nitrogen concentrations. The results demonstrated that E. gansuensis significantly improved the growth of A. inebrians under low nitrogen conditions. The fresh and dry weights, nitrogen reductase, nitrite reductase, and glutamine synthetase activity, NO3-, NH4+, N, and P content, and also the total N accumulation, N utilization efficiency, and N uptake efficiency were all higher in leaves of A. inebrians with E. ganusensis (E+) plants than A. inebrians plants without this endophyte (E-) under low nitrogen availability. In conclusion, E. gansuensis has positive effects on improving the growth of A. inebrians under low-nitrogen conditions by modulating the enzymes of nitrogen metabolism and enhancing nitrogen use efficiency.


Asunto(s)
Endófitos/metabolismo , Epichloe/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Poaceae/microbiología , Nitrógeno/análisis , Filogenia , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Poaceae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA