Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 575(7783): 505-511, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723265

RESUMEN

Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin-a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6-as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis.


Asunto(s)
Bacteriófagos/fisiología , Enterococcus faecalis/patogenicidad , Enterococcus faecalis/virología , Microbioma Gastrointestinal , Hepatitis Alcohólica/microbiología , Hepatitis Alcohólica/terapia , Terapia de Fagos , Alcoholismo/complicaciones , Alcoholismo/microbiología , Animales , Enterococcus faecalis/aislamiento & purificación , Etanol/efectos adversos , Hígado Graso/complicaciones , Hígado Graso/microbiología , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Hepatitis Alcohólica/complicaciones , Hepatitis Alcohólica/mortalidad , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Perforina/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38850311

RESUMEN

PURPOSE: The reversibility of early liver fibrosis highlights the need for improved early detection and monitoring techniques. Fibroblast activation protein (FAP) is a promising theranostics target significantly upregulated during fibrosis. This preclinical and preliminary clinical study investigated a FAP-targeted probe, gallium-68-labeled FAP inhibitor 04 ([68Ga]Ga-DOTA-FAPI-04), for its capability to visualize liver fibrosis. METHODS: The preclinical study employed [68Ga]Ga-DOTA-FAPI-04 micro-positron emission tomography (PET)/computed tomography (CT) on carbon tetrachloride-induced mice model (n = 34) and olive oil-treated control group (n = 26), followed by validation of the probe's biodistribution. Hepatic uptake was correlated with fibrosis and inflammation levels, quantified through histology and serum assays. FAP and α-smooth muscle actin expression were determined by immunohistochemistry, as well as immunofluorescence. The subsequent clinical trial enrolled 26 patients with suspected or confirmed liver fibrosis to undergo [68Ga]Ga-DOTA-FAPI-04 PET/magnetic resonance imaging or PET/CT. Key endpoints included correlating [68Ga]Ga-DOTA-FAPI-04 uptake with histological inflammation grades and fibrosis stages, and evaluating its diagnostic and differential efficacy compared to established serum markers and liver stiffness measurement (LSM). RESULTS: [68Ga]Ga-DOTA-FAPI-04 mean uptake in mice livers was notably higher than in control mice, increasing from week 6 [0.70 ± 0.11 percentage injected dose per cubic centimeter (%ID/cc)], peaking at week 10 (0.97 ± 0.15%ID/cc) and slightly reducing at week 12 (0.89 ± 0.28%ID/cc). The hepatic biodistribution and FAP expression showed a consistent trend. In the patient cohort, hepatic [68Ga]Ga-DOTA-FAPI-04 uptake presented moderate correlations with inflammation grades (r = 0.517 to 0.584, all P < 0.05) and fibrosis stages (r = 0.653 to 0.698, all P < 0.01). The average SUVmax to background ratio in the liver showed superior discriminative ability, especially between stage 0 and stage 1, outperforming LSM (area under curve 0.984 vs. 0.865). CONCLUSION: [68Ga]Ga-DOTA-FAPI-04 PET shows significant potential for non-invasive visualization and dynamic monitoring of liver fibrosis in both preclinical experiment and preliminary clinical trial, especially outperforming other common clinical indicators in the early stage. TRIAL REGISTRATION: NCT04605939. Registered October 25, 2020, https://clinicaltrials.gov/study/NCT04605939.

3.
Dig Dis ; : 1-8, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838657

RESUMEN

INTRODUCTION: This study aimed to investigate the prevalence of disorders of gut-brain interaction (DGBI) and life stress in college students, and explore risk factors of DGBI in college students and the role of life stress. METHODS: A total of 2,578 college students filled up validated questionnaires assessing GI symptoms, lifestyle, and life stress. Participants were diagnosed as DGBI based on the Rome III criteria. Multivariate ordinal logistic regression analysis and mediation effect model were employed to explore potential risk factors of DGBI and the mediating role of life stress and lifestyle in DGBI. RESULTS: A total of 437 of 2,578 (17.0%) college students were diagnosed with DGBI. College students with DGBI had higher levels of life stress, including eight specific categories. Females (1.709 [1.437, 2.033]), staying up late (1.519 [1.300, 1.776]), and life stress (1.008 [1.006, 1.010]) were risk factors for DGBI, while postgraduates (0.751 [0.578, 0.976]) and regular diet (0.751 [0.685, 0.947]) were protective factors. Males and poor family economic were associated with a higher risk of DGBI after controlling stress, while an association between grade and DGBI was mediated by stress, regular diet, and sleep habits. CONCLUSION: DGBI was common among college students. Life stress and lifestyle were associated with DGBI and mediated partial association between grade and DGBI in college students. More attention should be paid to undergraduates.

4.
Cell Biol Toxicol ; 39(5): 2345-2364, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639301

RESUMEN

Alcohol-mediated reactive oxygen species (ROS) play a vital role in intestinal barrier injury. However, the mechanism of ROS accumulation in enterocytes needs to be explored further. In our study, we found that chronic-binge ethanol-fed mice had increased levels of gut oxidative stress and high intestinal permeability. The transcription profiles of the colonic epithelial cells showed that the level of NADPH oxidase 1 (NOX1) was significantly elevated in alcohol-exposed mice compared with isocaloric-exposed mice. In vitro, NOX1 silencing alleviated ROS accumulation and the apoptosis of human colonic epithelial cells (NCM460), while NOX1 overexpression accelerated oxidative stress injury of NCM460 cells. Propionic acid was reduced in the gut of chronic-binge ethanol-fed mice, compared with isocaloric-fed mice, as observed through untargeted metabolomic analysis. Supplementation with propionate relieved ethanol-induced liver and intestinal barrier injuries and reduced the level of ROS accumulation and apoptosis of ethanol-induced colonic epithelial cells. Propionate alleviating NOX1 induced ROS injury of colonic epithelial cells, independent of G protein-coupled receptors. Propionate significantly inhibited histone deacetylase 2 (HDAC2) expressions both in ethanol-exposed colonic epithelial cells and TNF-α-treated NCM460. Chromatin immunoprecipitation (ChIP) assays showed that propionate suppressed the NOX1 expression by regulating histone acetylation in the gene promoter region. In conclusion, NOX1 induces oxidative stress injury of colonic epithelial cells in alcohol-related liver disease. Propionate, which can act as an endogenous HDAC2 inhibitor, can decrease levels of apoptosis of intestinal epithelial cells caused by oxidative stress.


Asunto(s)
Etanol , NADPH Oxidasa 1 , Estrés Oxidativo , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Etanol/toxicidad , Etanol/metabolismo , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , Propionatos/farmacología , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Colorectal Dis ; 38(1): 45, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795178

RESUMEN

PURPOSE: Identifying the onset age of cancer is essential for its early intervention. The aim of this study was to characterize the features and investigate the variation tendency of first primary colorectal cancer (CRC) onset age in the USA. METHODS: For this retrospective population-based cohort analysis, data on patients diagnosed with first primary CRC (n = 330,977) between 1992 and 2017 were obtained from the Surveillance, Epidemiology, and End Results dataset. Annual percent changes (APC) and average APCs were calculated to examine the changes in average age at CRC diagnosis using the Joinpoint Regression Program. RESULTS: From 1992 to 2017, the average age at CRC diagnosis decreased from 67.0 to 61.2 years, declining by 0.22% and 0.45% annually before and after 2000. The age at diagnosis was lower in the distal than in the proximal CRC cases and the age has the downward trends in all subgroups of sex, race, and stage. Over one-fifth of CRC patients were initially diagnosed with distantly metastatic CRC, with the age lower than that in localized CRC cases (63.5 vs 64.8 years). CONCLUSIONS: The first primary CRC onset age has decreased significantly in the USA over the last 25 years and the modern lifestyle may be responsible for the decline. Specifically, the age of proximal CRC is invariably higher than that of distal CRC. Moreover, the age of advanced stage is lower than that of the early stage. Clinicians should adopt earlier screening age and more effective screening techniques for CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Estados Unidos/epidemiología , Persona de Mediana Edad , Adulto , Edad de Inicio , Estudios Retrospectivos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/patología , Estudios de Cohortes , Incidencia
6.
Dig Dis Sci ; 68(7): 3059-3069, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36807831

RESUMEN

BACKGROUND: Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are two of the most common etiologies of chronic liver disease worldwide. Changes in intestinal permeability and increased gut microbial translocation have been posited as important contributors to inflammation in both ALD and NAFLD. However, gut microbial translocation has not been compared between the two etiologies and can lead to better understanding of the differences in their pathogenesis to liver disease. METHODS: We compared serum and liver markers in the following five models of liver disease to understand the differences in the role of gut microbial translocation on liver disease progression caused by ethanol versus Western diet: (1) 8-week chronic ethanol feeding model. (2) 2-week chronic-plus-binge (National Institute on Alcohol Abuse and Alcoholism (NIAAA)) ethanol feeding model. (3) 2-week chronic-plus-binge (NIAAA) ethanol feeding model in microbiota-humanized gnotobiotic mice colonized with stool from patients with alcohol-associated hepatitis. (4) 20-week Western-diet-feeding model of NASH. (5) 20-week Western-diet-feeding model in microbiota-humanized gnotobiotic mice colonized with stool from NASH patients. RESULTS: Translocation of bacterial lipopolysaccharide to the peripheral circulation was seen in both ethanol-induced and diet-induced liver disease, but translocation of bacteria itself was restricted to only ethanol-induced liver disease. Moreover, the diet-induced steatohepatitis models developed more significant liver injury, inflammation, and fibrosis compared with ethanol-induced liver disease models, and this positively correlated with the level of lipopolysaccharide translocation. CONCLUSIONS: More significant liver injury, inflammation, and fibrosis are seen in diet-induced steatohepatitis, which positively correlates with translocation of bacterial components, but not intact bacteria.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Etanol/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/patología , Traslocación Bacteriana , Lipopolisacáridos , Hígado/patología , Hepatopatías Alcohólicas/complicaciones , Hepatitis Alcohólica/complicaciones , Inflamación/patología , Dieta , Bacterias , Fibrosis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Hepatobiliary Pancreat Dis Int ; 22(5): 458-465, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37365109

RESUMEN

Drug-induced liver injury (DILI) is caused by various drugs with complex pathogenesis, and diverse clinical and pathological phenotypes. Drugs damage the liver directly through drug hepatotoxicity, or indirectly through drug-mediated oxidative stress, immune injury and inflammatory insult, which eventually lead to hepatocyte necrosis. Recent studies have found that the composition, relative content and distribution of gut microbiota in patients and animal models of DILI have changed significantly. It has been confirmed that gut microbial dysbiosis brings about intestinal barrier destruction and microorganisms translocation, and the alteration of microbial metabolites may cause or aggravate DILI. In addition, antibiotics, probiotics, and fecal microbiota transplantation are all emerging as prospective therapeutic methods for DILI by regulating the gut microbiota. In this review, we discussed how the altered gut microbiota participates in DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Hepatopatías , Probióticos , Animales , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Trasplante de Microbiota Fecal , Disbiosis , Probióticos/uso terapéutico
8.
J Cell Biochem ; 123(11): 1857-1872, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36037317

RESUMEN

Cholangiocyte death accompanied by the progression of primary biliary cholangitis (PBC) has not yet been thoroughly investigated. Thus, we are aimed to explore the role of HSP90 and a potential treatment strategy in cholangiocyte necroptosis. First, we detected the expression of HSP90 and necroptotic markers in liver tissues from patients and mice with PBC by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR). Then, the HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), was administered by intraperitoneal injection to evaluate its therapeutic effect for PBC by IHC, real-time PCR, and western blotting. Human intrahepatic bile duct epithelial cells (HIBECs) were induced to necroptosis by toxic bile acid and lipopolysaccharide (LPS) treatment, and evaluated via Cell Counting Kit-8 and flow cytometry assays. Additionally, 17-DMAG, cycloheximide, and a proteasome inhibitor were used to evaluate the role of HSP90 in cholangiocyte necroptosis. We found that the expression of HSP90 was elevated in the cholangiocytes of patients and mice with PBC, along with higher expressions of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated-MLKL (p-MLKL). Proinflammatory cytokines and antibody levels of the E2 subunit of pyruvate dehydrogenase complex decreased after treatment with 17-DMAG in PBC mice. Meanwhile, RIPK1, RIPK3, phosphorylated-RIPK3, MLKL, and p-MLKL protein expressions decreased with 17-DMAG treatment. In vitro, 17-DMAG and necrostatin-1 prevented glycochenodeoxycholic acid and LPS-induced necroptosis of HIBECs. Immunoprecipitation and high-performance liquid chromatography-mass spectrometry analysis showed that RIPK1 combined with HSP90. Additionally, the 17-DMAG treatment reduced the RIPK1 half-life. Overall, 17-DMAG might be a potential therapeutic agent for PBC via cholangiocyte necroptosis prevention by accelerating RIPK1 degradation.


Asunto(s)
Cirrosis Hepática Biliar , Necroptosis , Humanos , Animales , Ratones , Lipopolisacáridos/toxicidad , Proteínas Quinasas/metabolismo , Proteínas HSP90 de Choque Térmico , Células Epiteliales/metabolismo
9.
J Hepatol ; 72(3): 391-400, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31606552

RESUMEN

BACKGROUND & AIMS: Alcohol-associated liver disease is a leading indication for liver transplantation and a leading cause of mortality. Alterations to the gut microbiota contribute to the pathogenesis of alcohol-associated liver disease. Patients with alcohol-associated liver disease have increased proportions of Candida spp. in the fecal mycobiome, yet little is known about the effect of intestinal Candida on the disease. Herein, we evaluated the contributions of Candida albicans and its exotoxin candidalysin in alcohol-associated liver disease. METHODS: C. albicans and the extent of cell elongation 1 (ECE1) were analyzed in fecal samples from controls, patients with alcohol use disorder and those with alcoholic hepatitis. Mice colonized with different and genetically manipulated C. albicans strains were subjected to the chronic-plus-binge ethanol diet model. Primary hepatocytes were isolated and incubated with candidalysin. RESULTS: The percentages of individuals carrying ECE1 were 0%, 4.76% and 30.77% in non-alcoholic controls, patients with alcohol use disorder and patients with alcoholic hepatitis, respectively. Candidalysin exacerbates ethanol-induced liver disease and is associated with increased mortality in mice. Candidalysin enhances ethanol-induced liver disease independently of the ß-glucan receptor C-type lectin domain family 7 member A (CLEC7A) on bone marrow-derived cells, and candidalysin does not alter gut barrier function. Candidalysin can damage primary hepatocytes in a dose-dependent manner in vitro and is associated with liver disease severity and mortality in patients with alcoholic hepatitis. CONCLUSIONS: Candidalysin is associated with the progression of ethanol-induced liver disease in preclinical models and worse clinical outcomes in patients with alcoholic hepatitis. LAY SUMMARY: Candidalysin is a peptide toxin secreted by the commensal gut fungus Candida albicans. Candidalysin enhances alcohol-associated liver disease independently of the ß-glucan receptor CLEC7A on bone marrow-derived cells in mice without affecting intestinal permeability. Candidalysin is cytotoxic to primary hepatocytes, indicating a direct role of candidalysin on ethanol-induced liver disease. Candidalysin might be an effective target for therapy in patients with alcohol-associated liver disease.


Asunto(s)
Candida albicans/metabolismo , Exotoxinas/metabolismo , Proteínas Fúngicas/metabolismo , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/microbiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/microbiología , Adulto , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Exotoxinas/análisis , Exotoxinas/farmacología , Heces/microbiología , Femenino , Proteínas Fúngicas/análisis , Proteínas Fúngicas/farmacología , Microbioma Gastrointestinal , Hepatitis Alcohólica/mortalidad , Hepatocitos/efectos de los fármacos , Humanos , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Hepatopatías Alcohólicas/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
10.
Dig Dis Sci ; 65(12): 3592-3604, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32671585

RESUMEN

BACKGROUND: Alcohol-associated liver disease accounts for half of cirrhosis-related deaths worldwide. The spectrum of disease varies from simple steatosis to fibrosis, cirrhosis and ultimately hepatocellular carcinoma. Understanding the disease on a molecular level helps us to develop therapeutic targets. AIM: We performed transcriptomic analysis in liver and ileum from chronic plus binge ethanol-fed mice, and we assessed the role of selected differentially expressed genes and their association with serum bile acids and gut microbiota. METHODS: Wild-type mice were subjected to a chronic Lieber-DeCarli diet model for 8 weeks followed by one binge of ethanol. RNA-seq analysis was performed on liver and ileum samples. Associations between selected differentially regulated genes and serum bile acid profile or fecal bacterial profiling (16S rDNA sequencing) were investigated. RESULTS: We provide a comprehensive transcriptomic analysis to identify differentially expressed genes, KEGG pathways, and gene ontology functions in liver and ileum from chronic plus binge ethanol-fed mice. In liver, we identified solute carrier organic anion transporter family, member 1a1 (Slco1a1; encoding for organic anion transporting polypeptides (OATP) 1A1), as the most down-regulated mRNA, and it is negatively correlated with serum cholic acid level. Prokineticin 2 (Prok2) mRNA, a cytokine-like molecule associated with gastrointestinal tract inflammation, was significantly down-regulated in ethanol-fed mice. Prok2 mRNA expression was negatively correlated with abundance of Allobaculum (genus), Coprococcus (genus), Lachnospiraceae (family), Lactococcus (genus), and Cobriobacteriaceae (family), while it positively correlated with Bacteroides (genus). CONCLUSIONS: RNA-seq analysis revealed unique transcriptomic signatures in the liver and intestine following chronic plus binge ethanol feeding.


Asunto(s)
Etanol/farmacología , Hormonas Gastrointestinales/genética , Microbioma Gastrointestinal , Intestinos , Hepatopatías Alcohólicas/metabolismo , Hígado , Neuropéptidos/genética , Proteínas de Transporte de Catión Orgánico/genética , Animales , Depresores del Sistema Nervioso Central/farmacología , Ácido Cólico/análisis , Correlación de Datos , Regulación hacia Abajo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica/métodos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Intestinos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Análisis de Secuencia de ARN/métodos
11.
Gut ; 68(2): 359-370, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30171065

RESUMEN

The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Ácidos y Sales Biliares/metabolismo , Progresión de la Enfermedad , Disbiosis/complicaciones , Etanol/metabolismo , Ácidos Grasos Volátiles/metabolismo , Humanos , Metilaminas/metabolismo , Factores de Riesgo , Transducción de Señal
12.
Am J Physiol Gastrointest Liver Physiol ; 316(5): G563-G573, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30767680

RESUMEN

The intestinal microbiome plays a major role in the pathogenesis of liver disease, with a hallmark event being dysbiosis, or an imbalance of pathobionts and beneficial bacteria with the associated deleterious effects on their host. Reducing the number of intestinal bacteria with antibiotic treatment is generally advantageous in experimental liver diseases. Complete absence of intestinal microbiota as in germ-free rodents can be protective in autoimmune hepatitis and hepatic tumors induced by chemicals, or it can exacerbate disease as in acute toxic liver injury and liver fibrosis/cirrhosis. In alcoholic liver disease, nonalcoholic fatty liver disease, and autoimmune cholangiopathies, germ-free status can be associated with worsened or improved hepatic phenotype depending on the experimental model and type of rodent. Some of the unexpected outcomes can be explained by the limitations of rodents raised in a germ-free environment including a deficient immune system and an altered metabolism of lipids, cholesterol, xenobiotics/toxins, and bile acids. Given these limitations and to advance understanding of the interactions between host and intestinal microbiota, simplified model systems such as humanized gnotobiotic mice, or gnotobiotic mice monoassociated with a single bacterial strain or colonized with a defined set of microbes, are unique and useful models for investigation of liver disease in a complex ecosystem.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Hepatopatías , Animales , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Hepatopatías/clasificación , Hepatopatías/microbiología , Modelos Animales , Medición de Riesgo
13.
Front Cell Dev Biol ; 12: 1370042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694821

RESUMEN

TIR domain-containing adaptor inducing IFN-ß (TRIF) is a crucial adaptor molecule downstream of toll-like receptors 3 (TLR3) and 4 (TLR4). TRIF directly binds to TLR3 through its TIR domain, while it associates with TLR4 indirectly through the bridge adaptor molecule TRIF-related adaptor molecule (TRAM). TRIF plays a pivotal role in regulating interferon beta 1 (IFN-ß) response, nuclear factor kappa B (NF-κB) signaling, apoptosis, and necroptosis signaling mediated by TLR3 and TLR4. It accomplishes these by recruiting and activating various kinases or transcription factors via its distinct domains. In this review, we comprehensively summarize the TRIF-dependent signaling pathways mediated by TLR3 and TLR4, elucidating key target molecules and downstream pathways. Furthermore, we provide an overview of TRIF's impact on several liver disorders, including drug-induced liver injury, ischemia-reperfusion liver injury, autoimmune hepatitis, viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). We also explore its effects on liver steatosis, inflammation, fibrosis, and carcinogenesis. A comprehensive understanding of the TRIF-dependent signaling pathways, as well as the intricate relationship between TRIF and liver diseases, can facilitate the identification of potential drug targets and the development of novel and effective therapeutics against hepatic disorders.

14.
Atherosclerosis ; 392: 117526, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581738

RESUMEN

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a novel concept proposed in 2020, which is more practical for identifying patients with fatty liver disease with high risk of disease progression. Fatty liver is a driver for extrahepatic complications, particularly cardiovascular diseases (CVD). Although the risk of CVD in MAFLD could be predicted by carotid ultrasound test, a very early stage prediction method before the formation of pathological damage is still lacking. METHODS: Stool microbiomes and plasma metabolites were compared across 196 well-characterized participants encompassing normal controls, simple MAFLD patients, MAFLD patients with carotid artery pathological changes, and MAFLD patients with diagnosed coronary artery disease (CAD). 16S rDNA sequencing data and untargeted metabolomic profiles were interrogatively analyzed using differential abundance analysis and random forest (RF) machine learning algorithm to identify discriminatory gut microbiomes and metabolomic. RESULTS: Characteristic microbial changes in MAFLD patients with CVD risk were represented by the increase of Clostridia and Firmicutes-to-Bacteroidetes ratios. Faecalibacterium was negatively correlated with mean-intima-media thickness (IMT), TC, and TG. Megamonas, Bacteroides, Parabacteroides, and Escherichia were positively correlated with the exacerbation of pathological indexes. MAFLD patients with CVD risk were characterized by the decrease of lithocholic acid taurine conjugate, and the increase of ethylvanillin propylene glycol acetal, both of which had close relationship with Ruminococcus and Gemmiger. Biotin l-sulfoxide had positive correlation with mean-IMT, TG, and weight. The general auxin pesticide beta-naphthoxyacetic acid and the food additive glucosyl steviol were both positively correlated with the increase of mean-IMT. The model combining the metabolite signatures with 9 clinical parameters accurately distinguished MAFLD with CVD risk in the proband and validation cohort. It was found that citral was the most important discriminative metabolite marker, which was validated by both in vitro and in vivo experiments. CONCLUSIONS: Simple MAFLD patients and MAFLD patients with CVD risk had divergent gut microbes and plasma metabolites. The predictive model based on metabolites and 9 clinical parameters could effectively discriminate MAFLD patients with CVD risk at a very early stage.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Heces/microbiología , Metabolómica/métodos , Enfermedades Cardiovasculares/sangre , Biomarcadores/sangre , Medición de Riesgo , Estudios de Casos y Controles , Anciano , Valor Predictivo de las Pruebas , Bacterias , Factores de Riesgo de Enfermedad Cardiaca , Adulto , Enfermedad del Hígado Graso no Alcohólico/sangre , Aprendizaje Automático , Grosor Intima-Media Carotídeo
15.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317156

RESUMEN

The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.

16.
J Clin Transl Hepatol ; 11(4): 958-966, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37408823

RESUMEN

Primary biliary cholangitis (PBC) is a complex cholestatic liver disease with an unresolved etiology. The gut microbiota is composed of a dynamic community of bacteria, archaea, fungi, and viruses that have a key role in physiological processes related to nutrition, immunity, and host defense responses. A number of recent studies found that the composition of the gut microbiota of PBC patients was significantly altered, and reported that gut dysbiosis might arise during PBC development because of the close interactions of the liver and the gut. In light of the growing interest in this topic, the focus of this review is to characterize PBC gut microbiota alterations, the correlation between PBC pathology and the gut microbiota, and prospective therapies that target the altered gut microbiota, such as probiotics and fecal microbiota transplantation.

17.
Microorganisms ; 11(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630619

RESUMEN

Recently the roles of gut microbiota are highly regarded in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The intestinal bacteria regulate the metabolism of bile acids depending on bile salt hydrolase (BSH), 7-dehydroxylation, hydroxysteroid dehydrogenase (HSDH), or amide conjugation reaction, thus exerting effects on NAFLD development through bile acid receptors such as farnesoid X receptor (FXR), Takeda G-protein-coupled bile acid protein 5 (TGR5), and vitamin D receptor (VDR), which modulate nutrient metabolism and insulin sensitivity via interacting with downstream molecules. Reversely, the composition of gut microbiota is also affected by the level of bile acids in turn. We summarize the mutual regulation between the specific bacteria and bile acids in NAFLD and the latest clinical research based on microbiota and bile acids, which facilitate the development of novel treatment modalities in NAFLD.

18.
Front Nutr ; 10: 1090338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992907

RESUMEN

Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.

19.
Cell Biosci ; 13(1): 24, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739426

RESUMEN

BACKGROUND: Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS: Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS: Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS: Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.

20.
J Adv Res ; 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37356804

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS: The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW: Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA