Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5816, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987273

RESUMEN

The diverse applications of light-matter interactions in science and technology stem from the qualitatively distinct ways these interactions manifest, prompting the development of physical platforms that can interchange between regimes on demand. Bosonic cQED employs the light field of high-Q superconducting cavities coupled to nonlinear circuit elements, harnessing the rich dynamics of their interaction for quantum information processing. However, implementing fast switching of the interaction regime without deteriorating the cavity coherence is a significant challenge. We present an experiment that achieves this feat, combining nanosecond-scale frequency tunability of a transmon coupled to a cavity with lifetime of hundreds of microseconds. Our implementation affords a range of useful capabilities for quantum information processing; from fast creation of cavity Fock states using resonant interaction and interchanging tomography techniques at qualitatively distinct interaction regimes on the fly, to the suppression of unwanted cavity-transmon dynamics during idle evolution. By bringing flux tunability into the bosonic cQED toolkit, our work opens up the possibility to probe the full range of light-matter interaction dynamics within a single platform and provides valuable pathways towards robust and versatile quantum information processing.

2.
Front Neurosci ; 17: 1121592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214405

RESUMEN

Spiking neural networks (SNNs), which are a form of neuromorphic, brain-inspired AI, have the potential to be a power-efficient alternative to artificial neural networks (ANNs). Spikes that occur in SNN systems, also known as activations, tend to be extremely sparse, and low in number. This minimizes the number of data accesses typically needed for processing. In addition, SNN systems are typically designed to use addition operations which consume much less energy than the typical multiply and accumulate operations used in DNN systems. The vast majority of neuromorphic hardware designs support rate-based SNNs, where the information is encoded by spike rates. Generally, rate-based SNNs can be inefficient as a large number of spikes will be transmitted and processed during inference. One coding scheme that has the potential to improve efficiency is the time-to-first-spike (TTFS) coding, where the information isn't presented through the frequency of spikes, but instead through the relative spike arrival time. In TTFS-based SNNs, each neuron can only spike once during the entire inference process, and this results in high sparsity. The activation sparsity of TTFS-based SNNs is higher than rate-based SNNs, but TTFS-based SNNs have yet to achieve the same accuracy as rate-based SNNs. In this work, we propose two key improvements for TTFS-based SNN systems: (1) a novel optimization algorithm to improve the accuracy of TTFS-based SNNs and (2) a novel hardware accelerator for TTFS-based SNNs that uses a scalable and low-power design. Our work in TTFS coding and training improves the accuracy of TTFS-based SNNs to achieve state-of-the-art results on the MNIST and Fashion-MNIST datasets. Meanwhile, our work reduces the power consumption by at least 2.4×, 25.9×, and 38.4× over the state-of-the-art neuromorphic hardware on MNIST, Fashion-MNIST, and CIFAR10, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA