Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Cell Biol ; 95(4): 482-490, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28376311

RESUMEN

Oxidative stress and inflammation are major contributors to acrolein toxicity. Peroxisome proliferator activated receptor gamma (PPARγ) has antioxidant and anti-inflammatory effects. We investigated the contribution of PPARγ ligand GW1929 to the attenuation of oxidative stress in acrolein-induced insult. Male gp91phox knock-out (KO) mice were treated with acrolein (0.5 mg·(kg body mass)-1 by intraperitoneal injection for 7 days) with or without GW1929 (GW; 0.5 mg·(kg body mass)-1·day-1, orally, for 10 days). The livers were processed for further analyses. Acrolein significantly increased 8-isoprostane and reduced PPARγ activity (P < 0.05) in the wild type (WT) and KO mice. GW1929 reduced 8-isoprostane (by 32% and 40% in WT and KO mice, respectively) and increased PPARγ activity (by 81% and 92% in WT and KO, respectively). Chemokine activity was increased (by 63%) in acrolein-treated WT mice, and was reduced by GW1929 (by 65%). KO mice exhibited higher xanthine oxidase (XO). Acrolein increased XO and COX in WT mice and XO in KO mice. GW1929 significantly reduced COX in WT and KO mice and reduced XO in KO mice. Acrolein significantly reduced the total antioxidant status in WT and KO mice (P < 0.05), which was improved by GW1929 (by 75% and 74%). The levels of NF-κB were higher in acrolein-treated WT mice. GW1929 reduced NF-κB levels (by 51%) in KO mice. Acrolein increased CD36 in KO mice (by 43%), which was blunted with GW1929. Data confirms that the generation of free radicals by acrolein is mainly through NAD(P)H, but other oxygenates play a role too. GW1929 may alleviate the toxicity of acrolein by attenuating NF-κB, COX, and CD36.


Asunto(s)
Acroleína/farmacología , Inflamación/tratamiento farmacológico , PPAR gamma/metabolismo , Receptores Inmunológicos/deficiencia , Transducción de Señal/efectos de los fármacos , Animales , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
2.
Nat Commun ; 15(1): 78, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167270

RESUMEN

Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.

3.
Phys Med ; 118: 103301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290179

RESUMEN

PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.


Asunto(s)
Terapia de Protones , Protones , Estudios de Factibilidad , Tomografía de Emisión de Positrones , Terapia de Protones/métodos , Fantasmas de Imagen , Método de Montecarlo
4.
Math Biosci Eng ; 20(8): 14938-14958, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37679166

RESUMEN

In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.

5.
Phys Med Biol ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295440

RESUMEN

OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .

6.
Phys Med Biol ; 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137551

RESUMEN

OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.

7.
Inorg Chem ; 50(12): 5485-93, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21612206

RESUMEN

The ability of ortho-, meta- and para-carboranes to enhance the emission intensity has been compared. For this purpose a series of carborane-appended 1,3,5-triphenylbenzene (TB) and 1,3,5- tris(biphenyl-4-yl)benzene (TBB) containing three ortho-, meta- and para-carborane clusters directly attached to the conjugated cores have been synthesized employing Suzuki, Heck, and trimerization reactions. The incorporation of the icosahedral carboranes was associated with a red shift in the UV absorption spectrum of up to 13 nm as well as enhancements of the emission intensities of up to 154%. The presence of ortho-carboranes showed the maximum red shift in the UV spectrum whereas the maximum enhancement of the emission intensity was observed in the presence of meta-carborane clusters. The order of π-conjugation extension is found to be ortho > meta ≈ para. A comparative thermal analysis indicated o-carborane-appended trimers to be the most thermally stable in the series. Proton NMR spectra of reported carborane-appended trimers indicated that ortho- and meta-carborane cages have benzenelike characteristics.

8.
Sci Adv ; 7(42): eabh4394, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34644101

RESUMEN

In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient's body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.

9.
Appl Radiat Isot ; 151: 67-73, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158708

RESUMEN

A systematic study is conducted to understand the digital time of flight (TOF) response for a pair of fast scintillator detectors; BaF2-LaBr3, BaF2-BC501A, and LaBr3-BC501A respectively. Coincidence signals from each detector pair, irradiated by 22Na source, are acquired by LeCroy HDO5000A digital oscilloscope. While operating the oscilloscope at 2.5 giga samples per second (GSPS) and 500 mega samples per second (MSPS) of sampling rates, over 10 k coincidence signals were collected for each pair of detectors. Data at different sampling rates; 1.66 GSPS, 1.25 GSPS, 833 MSPS, 625 MSPS, 333 MSPS, and 250 MSPS were generated by down-sampling method. Using anode signal, the photon arrival time marker is determined by digital constant fraction (DCF) algorithm for each detector pair on event-by-event basis. For a given rate, the algorithm is optimized at various delay and fraction values to get the minimum TOF dispersion. Mentioned pairs reveals the TOF resolution (FWHM) as; 0.58 ns, 0.79 ns, 0.907 ns and 0.53 ns, 0.94 ns, 1.08 ns at 250 MSPS and 2.5 GSPS respectively. While analysing the events, a saturation in the TOF width is observed from 500 MSPS onward. The saturated dispersion values for the aforementioned pairs are found to be 0.53 ns, 0.94 ns, and 1 ns respectively. Effect is being understood by calculating the optimum DCF transition region distribution for BC501A and LaBr3 detectors, reveals a constant curvature profile at different rates. To further explain the saturation effect on computational ground, a simple pulse fitting approach is adopted using Landau distribution. Event-by-Event processing of fitted pulses followed by TOF resolution calculation reproduces the experimental numbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA