Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Chem ; 107: 104596, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421953

RESUMEN

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzotiazoles/farmacología , Colinérgicos/farmacología , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Tacrina/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Benzotiazoles/química , Colinérgicos/síntesis química , Colinérgicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Tacrina/química
2.
J Neurosci ; 36(7): 2161-75, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888927

RESUMEN

Postsynaptic N-methyl-d-aspartate receptors (NMDARs) phasically activated by presynaptically released glutamate are critical for synaptic transmission and plasticity. However, under pathological conditions, excessive activation of NMDARs by tonically increased ambient glutamate contributes to excitotoxicity associated with various acute and chronic neurological disorders. Here, using heterologously expressed GluN1/GluN2A and GluN1/GluN2B receptors and rat autaptic hippocampal microisland cultures, we show that pregnanolone sulfate inhibits NMDAR currents induced by a prolonged glutamate application with a higher potency than the NMDAR component of EPSCs. For synthetic pregnanolone derivatives substituted with a carboxylic acid moiety at the end of an aliphatic chain of varying length and attached to the steroid skeleton at C3, the difference in potency between tonic and phasic inhibition increased with the length of the residue. The steroid with the longest substituent, pregnanolone hemipimelate, had no effect on phasically activated receptors while inhibiting tonically activated receptors. In behavioral tests, pregnanolone hemipimelate showed neuroprotective activity without psychomimetic symptoms. These results provide insight into the influence of steroids on neuronal function and stress their potential use in the development of novel therapeutics with neuroprotective action. SIGNIFICANCE STATEMENT: Synaptic activation of N-methyl-d-aspartate receptors (NMDARs) plays a key role in synaptic plasticity, but excessive tonic NMDAR activation mediates excitotoxicity associated with many neurological disorders. Therefore, there is much interest in pharmacological agents capable of selectively blocking tonically activated NMDARs while leaving synaptically activated NMDARs intact. Here, we show that an endogenous neurosteroid pregnanolone sulfate is more potent at inhibiting tonically than synaptically activated NMDARs. Further, we report that a novel synthetic analog of pregnanolone sulfate, pregnanolone hemipimelate, inhibits tonic NMDAR currents without inhibiting the NMDAR component of the EPSC and shows neuroprotective activity in vivo without inducing psychomimetic side effects. These results suggest steroids may have a clinical advantage over other known classes of NMDAR inhibitors.


Asunto(s)
Pregnanos/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Reacción de Prevención/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Técnicas de Placa-Clamp , Pregnanos/química , Pregnanolona/química , Pregnanolona/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Relación Estructura-Actividad , Transmisión Sináptica/efectos de los fármacos
3.
Biomed Pharmacother ; 176: 116821, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823278

RESUMEN

Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.


Asunto(s)
Inhibidores de la Colinesterasa , Cognición , Maleato de Dizocilpina , Aprendizaje por Laberinto , Ratas Wistar , Receptores de N-Metil-D-Aspartato , Tacrina , Animales , Tacrina/farmacología , Inhibidores de la Colinesterasa/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Ratas , Maleato de Dizocilpina/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Cognición/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Escopolamina , Antagonistas de Aminoácidos Excitadores/farmacología , Memoria/efectos de los fármacos
4.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218127

RESUMEN

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad Hepática Inducida por Sustancias y Drogas , Fármacos Neuroprotectores , Piperidinas , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inhibidores de la Colinesterasa/química , Sitios de Unión , Colinesterasas , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico
5.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783152

RESUMEN

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Femenino , Masculino , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Senoterapéuticos , Inmunosupresores , Sirolimus , Serina-Treonina Quinasas TOR
6.
Brain Sci ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809889

RESUMEN

Research of treatment options addressing the cognitive deficit associated with neurodegenerative disorders is of particular importance. Application of trimethyltin (TMT) to rats represents a promising model replicating multiple relevant features of such disorders. N-methyl-D-aspartate (NMDA) receptor antagonists and gamma-aminobutyric acid type A (GABAA) receptor potentiators have been reported to alleviate the TMT-induced cognitive deficit. These compounds may provide synergistic interactions in other models. The aim of this study was to investigate, whether co-application of NMDA receptor antagonist dizocilpine (MK-801) and GABAA receptor potentiator midazolam would be associated with an improved effect on the TMT-induced model of cognitive deficit. Wistar rats injected with TMT were repeatedly (12 days) treated with MK-801, midazolam, or both. Subsequently, cognitive performance was assessed. Finally, after a 17-day drug-free period, hippocampal neurodegeneration (neuronal density in CA2/3 subfield in the dorsal hippocampus, dentate gyrus morphometry) were analyzed. All three protective treatments induced similar degree of therapeutic effect in Morris water maze. The results of histological analyses were suggestive of minor protective effect of the combined treatment (MK-801 and midazolam), while these compounds alone were largely ineffective at this time point. Therefore, in terms of mitigation of cognitive deficit, the combined treatment was not associated with improved effect.

7.
Biomolecules ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356650

RESUMEN

Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.


Asunto(s)
Maleato de Dizocilpina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamiento farmacológico , Esteroides/farmacología , Animales , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Modelos Animales de Enfermedad , Prueba de Laberinto Elevado , Células HEK293 , Humanos , Masculino , Pregnenolona/metabolismo , Pregnenolona/farmacología , Ratas Long-Evans , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/metabolismo
8.
Eur J Med Chem ; 219: 113434, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892271

RESUMEN

Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 µM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.


Asunto(s)
Inhibidores de la Colinesterasa/química , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tacrina/química , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Perros , Diseño de Fármacos , Semivida , Humanos , Locomoción/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Relación Estructura-Actividad Cuantitativa , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Tacrina/metabolismo , Tacrina/farmacología
9.
Biochem Pharmacol ; 186: 114460, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33571502

RESUMEN

N-methyl-D-aspartaterecepro receptor (NMDARs) are a subclass of glutamate receptors, which play an essential role in excitatory neurotransmission, but their excessive overactivation by glutamate leads to excitotoxicity. NMDARs are hence a valid pharmacological target for the treatment of neurodegenerative disorders; however, novel drugs targeting NMDARs are often associated with specific psychotic side effects and abuse potential. Motivated by currently available treatment against neurodegenerative diseases involving the inhibitors of acetylcholinesterase (AChE) and NMDARs, administered also in combination, we developed a dually-acting compound 7-phenoxytacrine (7-PhO-THA) and evaluated its neuropsychopharmacological and drug-like properties for potential therapeutic use. Indeed, we have confirmed the dual potency of 7-PhO-THA, i.e. potent and balanced inhibition of both AChE and NMDARs. We discovered that it selectively inhibits the GluN1/GluN2B subtype of NMDARs via an ifenprodil-binding site, in addition to its voltage-dependent inhibitory effect at both GluN1/GluN2A and GluN1/GluN2B subtypes of NMDARs. Furthermore, whereas NMDA-induced lesion of the dorsal hippocampus confirmed potent anti-excitotoxic and neuroprotective efficacy, behavioral observations showed also a cholinergic component manifesting mainly in decreased hyperlocomotion. From the point of view of behavioral side effects, 7-PhO-THA managed to avoid these, notably those analogous to symptoms of schizophrenia. Thus, CNS availability and the overall behavioral profile are promising for subsequent investigation of therapeutic use.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tacrina/farmacología , Animales , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Fármacos Neuroprotectores/química , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/química
10.
Eur J Pharmacol ; 881: 173187, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32446713

RESUMEN

Neuroactive steroid 20-oxo-5ß-pregnan-3α-yl L-glutamyl 1-ester (PA-Glu), a synthetic analogue of naturally occurring 20-oxo-5ß-pregnan-3α-yl sulfate (pregnanolone sulfate, PA-S), inhibits N-methyl-D-aspartate (NMDA) receptors and possesses neuroprotective properties and minimal adverse effects. Herein, we report in vivo effects of new structural modifications of the PA-S molecule: a nonpolar modification of the steroid D-ring (5ß-androstan-3α-yl L-glutamyl 1-ester, AND-Glu), attachment of a positively charged group to C3 (20-oxo-5ß-pregnan-3α-yl L-argininate dihydrochloride salt, PA-Arg) and their combination (5ß-androstan-3α-yl L-argininate dihydrochloride salt, AND-Arg). The first aim of this study was to determine the structure-activity relationship for neuroprotective effects in a model of excitotoxic hippocampal damage in rats, based on its behavioral correlate in Carousel maze. The second aim was to explore side effects of neuroprotective steroids on motor functions, anxiety (elevated plus maze) and locomotor activity (open field) and the effect of their high doses in mice. The neuroprotective properties of PA-Glu and AND-Glu were proven, with the effect of the latter appearing to be more pronounced. In contrast, neuroprotective efficacy failed when positively charged molecules (PA-Arg, AND-Arg) were used. AND-Glu and PA-Glu at the neuroprotective dose (1 mg/kg) did not unfavorably influence motor functions of intact mice. Moreover, anxiolytic effects of AND-Glu and PA-Glu were ascertained. These findings corroborate the value of research of steroidal inhibitors of NMDA receptors as potential neuroprotectants with slight anxiolytic effect and devoid of behavioral adverse effects. Taken together, the results suggest the benefit of the nonpolar D-ring modification, but not of the attachment of a positively charged group to C3.


Asunto(s)
Conducta Animal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Pregnanolona/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sulfatos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/toxicidad , Antagonistas de Aminoácidos Excitadores/síntesis química , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Estructura Molecular , Actividad Motora/efectos de los fármacos , N-Metilaspartato/toxicidad , Fármacos Neuroprotectores/síntesis química , Pregnanolona/análogos & derivados , Pregnanolona/síntesis química , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Sulfatos/síntesis química
11.
Eur J Med Chem ; 168: 491-514, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30851693

RESUMEN

A combination of tacrine and tryptophan led to the development of a new family of heterodimers as multi-target agents with potential to treat Alzheimer's disease. Based on the in vitro biological profile, compound S-K1035 was found to be the most potent inhibitor of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), demonstrating balanced IC50 values of 6.3 and 9.1 nM, respectively. For all the tacrine-tryptophan heterodimers, favorable inhibitory effect on hAChE as well as on hBChE was coined to the optimal spacer length ranging from five to eight carbon atoms between these two pharmacophores. S-K1035 also showed good ability to inhibit Aß42 self-aggregation (58.6 ±â€¯5.1% at 50 µM) as well as hAChE-induced Aß40 aggregation (48.3 ±â€¯6.3% at 100 µM). The X-ray crystallographic analysis of TcAChE in complex with S-K1035 pinpointed the utility of the hybridization strategy applied and the structures determined with the two K1035 enantiomers in complex with hBChE could explain the higher inhibition potency of S-K1035. Other in vitro evaluations predicted the ability of S-K1035 to cross blood-brain barrier and to exert a moderate inhibition potency against neuronal nitric oxide synthase. Based on the initial promising biochemical data and a safer in vivo toxicity compared to tacrine, S-K1035 was administered to scopolamine-treated rats being able to dose-dependently revert amnesia.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Tacrina/farmacología , Triptófano/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Relación Estructura-Actividad , Tacrina/química , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA