RESUMEN
The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen-based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model-based scenario of past land use (LU), and (c) pollen-based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (a) a west-east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north-south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreen trees in Alaska and in central and southern Fennoscandia). Land use played only a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire-prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.
Asunto(s)
Biomasa , Clima , Taiga , Árboles/clasificación , Carbón Orgánico/análisis , Cambio Climático , Incendios , Humanos , Lluvia , TemperaturaRESUMEN
Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0-2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr-1). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between -0.3 and 0.4 mm yr-1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr-1.
RESUMEN
In 1927, the first pollen diagram was published from the Bohemian/Bavarian Forest region of Central Europe, providing one of the first qualitative views of the long-term vegetation development in the region. Since then significant methodological advances in quantitative approaches such as pollen influx and pollen-based vegetation models (e.g., Landscape Reconstruction Algorithm, LRA) have contributed to enhance our understanding of temporal and spatial ecology. These types of quantitative reconstructions are fundamental for conservation and restoration ecology because they provide long-term perspectives on ecosystem functioning. In the Bohemian/Bavarian Forests, forest managers have a goal to restore the original forest composition at mid-elevation forests, yet they rely on natural potential vegetation maps that do not take into account long-term vegetation dynamics. Here we reconstruct the Holocene history of forest composition and discuss the implications the LRA has for regional forest management and conservation. Two newly analyzed pollen records from Prásilské jezero and Rachelsee were compared to 10 regional peat bogs/mires and two other regional lakes to reconstruct total land-cover abundance at both the regional- and local-scales. The results demonstrate that spruce has been the dominant canopy cover across the region for the past 9,000 years at both high- (>900 m) and mid-elevations (>700-900 m). At the regional-scale inferred from lake records, spruce has comprised an average of ~50% of the total forest canopy; whereas at the more local-scale at mid-elevations, spruce formed ~59%. Beech established ~6,000 cal. years BP while fir established later around 5,500 cal. years BP. Beech and fir growing at mid-elevations reached a maximum land-cover abundance of 24% and 13% roughly 1,000 years ago. Over the past 500 years spruce has comprised ~47% land-cover, while beech and fir comprised ~8% and <5% at mid-elevations. This approach argues for the "natural" development of spruce and fir locally in zones where the paleoecology indicates the persistence of these species for millennia. Contrasting local and regional reconstructions of forest canopy cover points to a patchwork mosaic with local variability in the dominant taxa. Incorporation of paleoecological data in dialogues about biodiversity and ecosystem management is an approach that has wider utility.
RESUMEN
BACKGROUND: Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. METHODS: Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. RESULTS: Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand's height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. CONCLUSION: These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations.