RESUMEN
DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.
Asunto(s)
Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas Bacterianas/metabolismo , Inestabilidad Cromosómica/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Inestabilidad Genómica , Humanos , Proteínas de Transporte de Membrana/fisiología , Mutagénesis , Mutación , Factores de Transcripción/metabolismoRESUMEN
How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.
Asunto(s)
Presentación de Antígeno/inmunología , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/inmunología , Oncogenes , ARN Largo no Codificante/genética , Escape del Tumor/genética , Escape del Tumor/inmunología , Adenoma/genética , Adenoma/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid ß plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aß-pathology-dependent IFN-I activation in microglia and other cell types. Long-term blockade of IFN-I receptor (IFNAR) rescued both memory and synaptic deficits and resulted in reduced microgliosis, inflammation, and neuritic pathology. Microglia-specific Ifnar1 deletion attenuated the loss of post-synaptic terminals by selective engulfment, whereas neural Ifnar1 deletion restored pre-synaptic terminals and decreased plaque accumulation. Overall, IFN-I signaling represents a critical module within the neuroinflammatory network of AD and prompts concerted cellular states that are detrimental to memory and cognition.
Asunto(s)
Enfermedad de Alzheimer , Interferón Tipo I , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Inmunidad Innata , Interferón Tipo I/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismoRESUMEN
Severe and chronic infections, including pneumonia, sepsis, and tuberculosis (TB), induce long-lasting epigenetic changes that are associated with an increase in all-cause postinfectious morbidity and mortality. Oncology studies identified metabolic drivers of the epigenetic landscape, with the tricarboxylic acid (TCA) cycle acting as a central hub. It is unknown if the TCA cycle also regulates epigenetics, specifically DNA methylation, after infection-induced immune tolerance. The following studies demonstrate that lipopolysaccharide and Mycobacterium tuberculosis induce changes in DNA methylation that are mediated by the TCA cycle. Infection-induced DNA hypermethylation is mitigated by inhibitors of cellular metabolism (rapamycin, everolimus, metformin) and the TCA cycle (isocitrate dehydrogenase inhibitors). Conversely, exogenous supplementation with TCA metabolites (succinate and itaconate) induces DNA hypermethylation and immune tolerance. Finally, TB patients who received everolimus have less DNA hypermethylation demonstrating proof of concept that metabolic manipulation can mitigate epigenetic scars.
Asunto(s)
Ciclo del Ácido Cítrico , Metilación de ADN , Tolerancia Inmunológica , Lipopolisacáridos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Humanos , Animales , Tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/microbiología , Ratones , Epigénesis Genética , Succinatos/metabolismo , Everolimus/farmacología , Ácido Succínico/metabolismoRESUMEN
Castration-resistant prostate cancer (CRPC) poses a major clinical challenge with the androgen receptor (AR) remaining to be a critical oncogenic player. Several lines of evidence indicate that AR induces a distinct transcriptional program after androgen deprivation in CRPCs. However, the mechanism triggering AR binding to a distinct set of genomic loci in CRPC and how it promotes CRPC development remain unclear. We demonstrate here that atypical ubiquitination of AR mediated by an E3 ubiquitin ligase TRAF4 plays an important role in this process. TRAF4 is highly expressed in CRPCs and promotes CRPC development. It mediates K27-linked ubiquitination at the C-terminal tail of AR and increases its association with the pioneer factor FOXA1. Consequently, AR binds to a distinct set of genomic loci enriched with FOXA1- and HOXB13-binding motifs to drive different transcriptional programs including an olfactory transduction pathway. Through the surprising upregulation of olfactory receptor gene transcription, TRAF4 increases intracellular cAMP levels and boosts E2F transcription factor activity to promote cell proliferation under androgen deprivation conditions. Altogether, these findings reveal a posttranslational mechanism driving AR-regulated transcriptional reprogramming to provide survival advantages for prostate cancer cells under castration conditions.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Antagonistas de Andrógenos , Factor 4 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Ubiquitinación , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND & AIMS: Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS: Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS: Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION: Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS: Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hígado/patología , Modelos Animales de Enfermedad , Carcinogénesis/metabolismo , Carcinógenos/metabolismoRESUMEN
BACKGROUND: Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE: The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN: We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS: The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION: These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.
Asunto(s)
Negro o Afroamericano , Matriz Extracelular , Leiomioma , Miometrio , Neoplasias Uterinas , Adulto , Femenino , Humanos , Persona de Mediana Edad , Negro o Afroamericano/genética , Matriz Extracelular/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/etnología , Miometrio/metabolismo , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/genética , Transcriptoma , Neoplasias Uterinas/genética , Neoplasias Uterinas/etnología , Neoplasias Uterinas/metabolismo , Blanco/genéticaRESUMEN
Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Fosfofructoquinasa-2/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 4/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Metástasis de la Neoplasia , Vía de Pentosa Fosfato , Fosforilación , Fosfoserina/metabolismo , Pronóstico , Purinas/biosíntesis , Purinas/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Transcetolasa/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFß1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFß1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFß1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFß1 decreased NER capacity while inhibiting TGFß signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFß1, but increased expression in EDC-MMSCs after TGFß signaling inhibition. Overall, we demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.
Asunto(s)
Disruptores Endocrinos , Leiomioma , Femenino , Animales , Ratas , Reparación del ADN/genética , Daño del ADN , Factor de Crecimiento Transformador beta/genética , Carcinogénesis , Disruptores Endocrinos/toxicidad , Leiomioma/inducido químicamente , Leiomioma/genéticaRESUMEN
Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.
Asunto(s)
Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Infecciones por Rotavirus/metabolismo , Animales , Inmunidad Innata , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ratones , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células Madre/fisiologíaRESUMEN
BACKGROUND: Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS: To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS: Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS: Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.
Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Cisplatino/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Glucosa , Antineoplásicos/farmacologíaRESUMEN
Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.
Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Células A549 , Antivirales/farmacología , Línea Celular , Interacciones Microbiota-Huesped/inmunología , Humanos , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/genética , Índice de Severidad de la Enfermedad , Especificidad de la Especie , Replicación ViralRESUMEN
Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.
Asunto(s)
Cardiomiopatías/metabolismo , Ataxia de Friedreich/metabolismo , Retinoides/metabolismo , Adolescente , Adulto , Anciano , Aldehído Oxidorreductasas/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Proteínas de Unión a Hierro/metabolismo , Masculino , Persona de Mediana Edad , Análisis por Matrices de Proteínas , Proteómica , Adulto Joven , FrataxinaRESUMEN
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Degeneración Hepatolenticular/enzimología , Animales , ATPasas Transportadoras de Cobre/genética , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/metabolismo , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.
Asunto(s)
Infecciones por Caliciviridae , Interacciones Huésped-Patógeno/inmunología , Interferones , Intestinos , Norovirus , Sistemas CRISPR-Cas , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Humanos , Interferones/genética , Interferones/metabolismo , Intestinos/inmunología , Intestinos/virología , Modelos Biológicos , Norovirus/genética , Norovirus/inmunología , Norovirus/patogenicidad , Organoides/inmunología , Organoides/virología , Análisis de Secuencia de ARN , Transcriptoma/genética , Replicación ViralRESUMEN
The number and quality of oocytes within the ovarian reserve largely determines fertility and reproductive lifespan in mammals. An oocyte-specific transcription factor cascade controls oocyte development, and some of these transcription factors, such as newborn ovary homeobox gene (NOBOX), are candidate genes for primary ovarian insufficiency in women. Transcription factors are frequently modified by the post-translational modification SUMOylation, but it is not known whether SUMOylation is required for function of the oocyte-specific transcription factors or if SUMOylation is required in oocytes during their development within the ovarian follicle. To test this, the sole E2 SUMO-conjugating enzyme, Ube2i, was ablated in mouse oocytes beginning in primordial follicles. Loss of oocyte Ube2i resulted in female infertility with major defects in stability of the primordial follicle pool, ovarian folliculogenesis, ovulation and meiosis. Transcriptomic profiling of ovaries suggests that loss of oocyte Ube2i caused defects in both oocyte- and granulosa cell-expressed genes, including NOBOX and some of its known target genes. Together, these studies show that SUMOylation is required in the mammalian oocyte during folliculogenesis for both oocyte development and communication with ovarian somatic cells.
Asunto(s)
Comunicación Celular , Células de la Granulosa , Infertilidad Femenina , Oocitos/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/deficiencia , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Infertilidad Femenina/embriología , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Ratones , Ratones Noqueados , Oocitos/patología , Enzimas Ubiquitina-Conjugadoras/metabolismoRESUMEN
BACKGROUND: In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS: A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION: These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.
Asunto(s)
Transcriptoma , Tuberculosis , Citocinas , Humanos , Inflamación , ARN , Tuberculosis/genéticaRESUMEN
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.
Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Adhesinas de Escherichia coli/genética , Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Factores de Virulencia/metabolismoRESUMEN
The promising activity of BET protein inhibitors (BETi's) is compromised by adaptive or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/enhancers, which was associated with increased levels of nuclear ß-catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6 reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells, confirming the mechanistic role of the ß-catenin-TCF7L2-JMJD6-c-Myc axis in BETi resistance. Patient-derived, post-MPN, CD34+ sAML blasts exhibiting relative resistance to BETi, as compared with sensitive sAML blasts, displayed higher messenger RNA and protein expression of TCF7L2, JMJD6, and c-Myc and following BETi washout exhibited rapid restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted their levels, inducing loss of viability of the sAML blasts. Disruption of colocalization of nuclear ß-catenin with TBL1 and TCF7L2 by the small-molecule inhibitor BC2059 combined with depletion of BRD4 by BET proteolysis-targeting chimera reduced c-Myc levels and exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemia burden and improved survival of mice engrafted with BETi-P/R sAML cells or patient-derived AML blasts innately resistant to BETi. Therefore, multitargeted disruption of the ß-catenin-TCF7L2-JMJD6-c-Myc axis overcomes adaptive and innate BETi resistance, exhibiting preclinical efficacy against human post-MPN sAML cells.
Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismoRESUMEN
Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.