Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(16): 168202, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701472

RESUMEN

We study theoretically the dynamical process of yielding in cyclically sheared amorphous materials, within a thermal elastoplastic model and the soft glassy rheology model. Within both models we find an initially slow accumulation, over many cycles after the inception of shear, of low levels of damage in the form strain heterogeneity across the sample. This slow fatigue then suddenly gives way to catastrophic yielding and material failure. Strong strain localization in the form of shear banding is key to the failure mechanism. We characterize in detail the dependence of the number of cycles N^{*} before failure on the amplitude of imposed strain, the working temperature, and the degree to which the sample is annealed prior to shear. We discuss our finding with reference to existing experiments and particle simulations, and suggest new ones to test our predictions.

2.
Phys Rev Lett ; 128(17): 178001, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570431

RESUMEN

Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under simple shear deformation. We show that an initially undeformed fluidlike tissue acquires finite rigidity above a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical point that governs the liquid-solid transition of the undeformed system. We further show that a solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.


Asunto(s)
Elasticidad , Epitelio , Estrés Mecánico
3.
Phys Rev Lett ; 125(16): 168003, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124865

RESUMEN

We study theoretically the yielding of sheared amorphous materials as a function of increasing levels of initial sample annealing prior to shear, in three widely used constitutive models and three widely studied annealing protocols. In thermal systems we find a gradual progression, with increasing annealing, from smoothly "ductile" yielding, in which the sample remains homogeneous, to abruptly "brittle" yielding, in which it becomes strongly shear banded. This progression arises from an increase with annealing in the size of an overshoot in the underlying stress-strain curve for homogeneous shear, which causes a shear banding instability that becomes more severe with increasing annealing. Ductile and brittle yielding thereby emerge as two limiting cases of a continuum of yielding transitions, from gradual to catastrophic. In contrast, athermal systems with a stress overshoot always show brittle yielding at low shear rates, however small the overshoot.

4.
Phys Rev E ; 108(4): L042602, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978678

RESUMEN

The rheology of biological tissue is key to processes such as embryo development, wound healing, and cancer metastasis. Vertex models of confluent tissue monolayers have uncovered a spontaneous liquid-solid transition tuned by cell shape; and a shear-induced solidification transition of an initially liquidlike tissue. Alongside this jamming/unjamming behavior, biological tissue also displays an inherent viscoelasticity, with a slow time and rate-dependent mechanics. With this motivation, we combine simulations and continuum theory to examine the rheology of the vertex model in nonlinear shear across a full range of shear rates from quastistatic to fast, elucidating its nonlinear stress-strain curves after the inception of shear of finite rate, and its steady state flow curves of stress as a function of strain rate. We formulate a rheological constitutive model that couples cell shape to flow and captures both the tissue solid-liquid transition and its rich linear and nonlinear rheology.


Asunto(s)
Desarrollo Embrionario , Motivación , Forma de la Célula , Reología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA