RESUMEN
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Regulación de la Expresión Génica , Cara , Proteínas Nucleares/genética , Histona Demetilasas/genéticaRESUMEN
PURPOSE: We compared the rate of errors in genome sequencing (GS) result disclosures by genetic counselors (GC) and trained non-genetics healthcare professionals (NGHPs) in SouthSeq, a randomized trial utilizing GS in critically ill infants. METHODS: Over 400 recorded GS result disclosures were analyzed for major and minor errors. We used Fisher's exact test to compare error rates between GCs and NGHPs and performed a qualitative content analysis to characterize error themes. RESULTS: Major errors were identified in 7.5% of disclosures by NGHPs and in no disclosures by GCs. Minor errors were identified in 32.1% of disclosures by NGHPs and in 11.4% of disclosures by GCs. Although most disclosures lacked errors, NGHPs were significantly more likely to make any error than GCs for all result types (positive, negative, or uncertain). Common major error themes include omission of critical information, overstating a negative result, and overinterpreting an uncertain result. The most common minor error was failing to disclose negative secondary findings. CONCLUSION: Trained NGHPs made clinically significant errors in GS result disclosures. Characterizing common errors in result disclosure can illuminate gaps in education to inform the development of future genomics training and alternative service delivery models.
Asunto(s)
Asesoramiento Genético , Personal de Salud , Humanos , Femenino , Recién Nacido , Masculino , Revelación , Secuenciación Completa del Genoma/ética , Neonatología/ética , Pruebas Genéticas/métodosRESUMEN
As the uptake of population screening expands, assessment of medical and psychosocial outcomes is needed. Through the Alabama Genomic Health Initiative (AGHI), a state-funded genomic research program, individuals received screening for pathogenic or likely pathogenic variants in 59 actionable genes via genotyping. Of the 3874 eligible participants that received screening results, 858 (22%) responded to an outcomes survey. The most commonly reported motivation for seeking testing through AGHI was contribution to genetic research (64%). Participants with positive results reported a higher median number of planned actions (median = 5) due to AGHI results as compared to negative results (median = 3). Interviews were conducted with survey participants with positive screening results. As determined by certified genetic counselors, 50% of interviewees took appropriate medical action based on their result. There were no negative or harmful actions taken. These findings indicate population genomic screening of an unselected adult population is feasible, is not harmful, and may have positive outcomes on participants now and in the future; however, further research is needed in order to assess clinical utility.
Asunto(s)
Genómica , Metagenómica , Adulto , Humanos , Pruebas GenéticasRESUMEN
PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.
Asunto(s)
Pruebas Diagnósticas de Rutina , Pruebas Genéticas , Secuencia de Bases , Mapeo Cromosómico , Pruebas Genéticas/métodos , Genómica , HumanosRESUMEN
PURPOSE: The Alabama Genomic Health Initiative (AGHI) is a state-funded effort to provide genomic testing. AGHI engages two distinct cohorts across the state of Alabama. One cohort includes children and adults with undiagnosed rare disease; a second includes an unselected adult population. Here we describe findings from the first 176 rare disease and 5369 population cohort AGHI participants. METHODS: AGHI participants enroll in one of two arms of a research protocol that provides access to genomic testing results and biobank participation. Rare disease cohort participants receive genome sequencing to identify primary and secondary findings. Population cohort participants receive genotyping to identify pathogenic and likely pathogenic variants for actionable conditions. RESULTS: Within the rare disease cohort, genome sequencing identified likely pathogenic or pathogenic variation in 20% of affected individuals. Within the population cohort, 1.5% of individuals received a positive genotyping result. The rate of genotyping results corroborated by reported personal or family history varied by gene. CONCLUSIONS: AGHI demonstrates the ability to provide useful health information in two contexts: rare undiagnosed disease and population screening. This utility should motivate continued exploration of ways in which emerging genomic technologies might benefit broad populations.
Asunto(s)
Genómica , Enfermedades Raras , Adulto , Alabama , Niño , Mapeo Cromosómico , Estudios de Cohortes , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genéticaRESUMEN
PURPOSE OF REVIEW: To summarize the existing literature on the international adoption of children with birth defects and identify areas for further research. RECENT FINDINGS: International adoption brings thousands of children to the United States each year, and children with birth defects are overrepresented in this population. Studies have demonstrated disparities in the health of children adopted from different countries as well as the complexity of medical care needed after adoption. SUMMARY: Although the health of children involved in international adoption has been well studied, there is a lack of information about the experiences of the adoptive parents of children with birth defects. We discuss a pilot study conducted on adoptive parents of children with a specific birth defect, orofacial clefting, and discuss areas for future research.
Asunto(s)
Adopción/psicología , Labio Leporino/psicología , Fisura del Paladar/psicología , Emigración e Inmigración , Conocimientos, Actitudes y Práctica en Salud , Cooperación Internacional , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Padres/psicología , Estados UnidosRESUMEN
BACKGROUND: It is critical to understand the wide-ranging clinical and non-clinical effects of genome sequencing (GS) for parents in the NICU context. We assessed parents' experiences with GS as a first-line diagnostic tool for infants with suspected genetic conditions in the NICU. METHODS: Parents of newborns (N = 62) suspected of having a genetic condition were recruited across five hospitals in the southeast United States as part of the SouthSeq study. Semi-structured interviews (N = 78) were conducted after parents received their child's sequencing result (positive, negative, or variants of unknown significance). Thematic analysis was performed on all interviews. RESULTS: Key themes included that (1) GS in infancy is important for reproductive decision making, preparing for the child's future care, ending the diagnostic odyssey, and sharing results with care providers; (2) the timing of disclosure was acceptable for most parents, although many reported the NICU environment was overwhelming; and (3) parents deny that receiving GS results during infancy exacerbated parent-infant bonding, and reported variable impact on their feelings of guilt. CONCLUSION: Parents reported that GS during the neonatal period was useful because it provided a "backbone" for their child's care. Parents did not consistently endorse negative impacts like interference with parent-infant bonding.
RESUMEN
To meet current and expected future demand for genome sequencing in the neonatal intensive care unit (NICU), adjustments to traditional service delivery models are necessary. Effective programs for the training of non-genetics providers (NGPs) may address the known barriers to providing genetic services including limited genetics knowledge and lack of confidence. The SouthSeq project aims to use genome sequencing to make genomic diagnoses in the neonatal period and evaluate a scalable approach to delivering genome sequencing results to populations with limited access to genetics professionals. Thirty-three SouthSeq NGPs participated in a live, interactive training intervention and completed surveys before and after participation. Here, we describe the protocol for the provider training intervention utilized in the SouthSeq study and the associated impact on NGP knowledge and confidence in reviewing, interpreting, and using genome sequencing results. Participation in the live training intervention led to an increased level of confidence in critical skills needed for real-world implementation of genome sequencing. Providers reported a significant increase in confidence level in their ability to review, understand, and use genome sequencing result reports to guide patient care. Reported barriers to implementation of genome sequencing in a NICU setting included test cost, lack of insurance coverage, and turn around time. As implementation of genome sequencing in this setting progresses, effective education of NGPs is critical to provide access to high-quality and timely genomic medicine care.