Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(10): 101802, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739352

RESUMEN

We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved.

2.
Phys Rev Lett ; 128(13): 132003, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426713

RESUMEN

The ratio of the nucleon F_{2} structure functions, F_{2}^{n}/F_{2}^{p}, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from ^{3}H and ^{3}He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range 0.19

3.
Phys Rev Lett ; 125(20): 201803, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258649

RESUMEN

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{µ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{µ},µp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics. We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of (4.93±0.76_{stat}±1.29_{sys})×10^{-38} cm^{2}, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.

4.
Phys Rev Lett ; 124(21): 212501, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530643

RESUMEN

We report the first measurement of the (e,e^{'}p) three-body breakup reaction cross sections in helium-3 (^{3}He) and tritium (^{3}H) at large momentum transfer [⟨Q^{2}⟩≈1.9 (GeV/c)^{2}] and x_{B}>1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40≤p_{miss}≤500 MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab initio calculations. Overall good agreement, within ±20%, is observed between data and calculations for the full p_{miss} range for ^{3}H and for 100≤p_{miss}≤350 MeV/c for ^{3}He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at p_{miss}>250 MeV/c and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of ^{3}He plus ^{3}H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire p_{miss} range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of 500 MeV/c.

5.
Phys Rev Lett ; 123(13): 131801, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697542

RESUMEN

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.6×10^{20} protons on target of exposure. The measured differential cross sections are presented as a function of muon momentum, using multiple Coulomb scattering as a momentum measurement technique, and the muon angle with respect to the beam direction. We compare the measured cross sections to multiple neutrino event generators and find better agreement with those containing more complete treatment of quasielastic scattering processes at low Q^{2}. The total flux integrated cross section is measured to be 0.693±0.010(stat)±0.165(syst)×10^{-38} cm^{2}.

6.
Phys Rev Lett ; 122(17): 172502, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31107086

RESUMEN

We measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5 (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400 MeV/c. This was the first direct measurement of both proton-proton (pp) and neutron-proton (np) short-range correlated (SRC) pair knockout from heavy asymmetric nuclei. For all measured nuclei, the average proton-proton (pp) to neutron-proton (np) reduced cross-section ratio is about 6%, in agreement with previous indirect measurements. Correcting for single-charge exchange effects decreased the SRC pairs ratio to ∼3%, which is lower than previous results. Comparisons to theoretical generalized contact formalism (GCF) cross-section calculations show good agreement using both phenomenological and chiral nucleon-nucleon potentials, favoring a lower pp to np pair ratio. The ability of the GCF calculation to describe the experimental data using either phenomenological or chiral potentials suggests possible reduction of scale and scheme dependence in cross-section ratios. Our results also support the high-resolution description of high-momentum states being predominantly due to nucleons in SRC pairs.

7.
Phys Rev Lett ; 121(9): 092501, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230869

RESUMEN

Short-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.) which indicates a small separation distance between the nucleons in the pair. Determining the c.m. momentum distribution of SRC pairs is essential for understanding their formation process. We report here on the extraction of the c.m. motion of proton-proton (pp) SRC pairs in carbon and, for the first time in heavier and ansymetric nuclei: aluminum, iron, and lead, from measurements of the A(e,e^{'}pp) reaction. We find that the pair c.m. motion for these nuclei can be described by a three-dimensional Gaussian with a narrow width ranging from 140 to 170 MeV/c, approximately consistent with the sum of two mean-field nucleon momenta. Comparison with calculations appears to show that the SRC pairs are formed from mean-field nucleons in specific quantum states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA