Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 152(3): 584-98, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374351

RESUMEN

Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development.


Asunto(s)
Heterocromatina/metabolismo , Lamina Tipo A/metabolismo , Desarrollo de Músculos , Mioblastos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Perfilación de la Expresión Génica , Ratones , Mioblastos/citología , Membrana Nuclear/metabolismo , Receptor de Lamina B
2.
Hum Mol Genet ; 23(10): 2604-17, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24368419

RESUMEN

Although the cause of Duchenne muscular dystrophy (DMD) is known, the specific factors that initiate and perpetuate disease progression are not well understood. We hypothesized that leaky dystrophin-deficient skeletal muscle releases endogenous danger signals (TLR ligands), which bind to Toll-like receptors (TLRs) on muscle and immune cells and activate downstream processes that facilitate degeneration and regeneration in dystrophic skeletal muscle. Here, we demonstrate that dystrophin-deficient mouse muscle cells show increased expression of several cell-surface and endosomal TLRs. In vitro screening identified ssRNA as a relevant endogenous TLR7 ligand. TLR7 activation led to myd88-dependent production of pro-inflammatory cytokines in dystrophin-deficient muscle cells, and cause significant degeneration/regeneration in vivo in mdx mouse muscle. Also, knockout of the central TLR adaptor protein, myd88 in mdx mice significantly improved skeletal and cardiac muscle function. Likewise, proof-of-concept experiments showed that treating young mdx mice with a TLR7/9 antagonist significantly reduced skeletal muscle inflammation and increased muscle force, suggesting that blocking this pathway may have therapeutic potential for DMD.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Músculo Esquelético/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Miocardio/metabolismo , Receptor Toll-Like 7/fisiología , Receptor Toll-Like 9/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Distrofina/deficiencia , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/agonistas , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos Esqueléticos/inmunología , Mioblastos Esqueléticos/metabolismo , Miocardio/patología , Fenotipo , Receptor Toll-Like 7/agonistas
3.
J Physiol ; 593(11): 2479-97, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25854148

RESUMEN

KEY POINTS: Smad7 is an intracellular antagonist of transforming growth factor-ß signalling pathways and modulates muscle growth in vivo. Loss of Smad7 results in decreased muscle mass, reduced force generation, fibre type switching from glycolytic towards oxidative type and delayed recovery from injury. Upregulated Smad2/3 signalling in Smad7(-/-) muscle results in reduced myoblast proliferation and differentiation. Smad7 is an important regulator of muscle growth and may be a potential intracellular therapeutic target for muscle disorders. ABSTRACT: The transforming growth factor-ß (TGF-ß) family of growth factors plays an essential role in mediating cellular growth and differentiation. Myostatin is a muscle-specific member of the TGF-ß superfamily and a negative regulator of muscle growth. Myostatin inhibitors are currently being pursued as therapeutic options for muscle disorders. Smad7 inhibits intracellular myostatin signalling via Smad2/3, and thus presents a means of regulating myostatin and potentiating muscle growth. We investigated the functional loss of Smad7 on muscle in vivo by examining muscle growth and differentiation in mice deficient in Smad7 (Smad7(-/-) ). Smad7(-/-) mice showed reduced muscle mass, hypotrophy and hypoplasia of muscle fibres, as well as an increase in oxidative fibre types. Examination of muscle strength showed reduced force generation in vivo and ex vivo compared to wild-type controls. Analysis of muscle regeneration showed a delay in recovery, probably as a result of decreased activation, proliferation and differentiation of satellite cells, as confirmed in vitro. Additionally, myostatin expression was upregulated in Smad7(-/-) muscle. Our findings suggest that increased Smad2/3 signalling in the absence of Smad7 inhibition impedes muscle growth and regeneration. Taken together, our experiments demonstrate that Smad7 is an important mediator of muscle growth in vivo. Our studies enhance our understanding of in vivo TGF-ß pathway modulation and suggest that Smad7 may be an important therapeutic target for muscle disorders.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Proteína smad7/genética , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Femenino , Masculino , Ratones Noqueados , Fuerza Muscular , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Mioblastos/citología , Regeneración , Proteína smad7/fisiología
4.
Hum Mol Genet ; 22(14): 2852-69, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23535822

RESUMEN

Mutations in lamin A/C result in a range of tissue-specific disorders collectively called laminopathies. Of these, Emery-Dreifuss and Limb-Girdle muscular dystrophy 1B mainly affect striated muscle. A useful model for understanding both laminopathies and lamin A/C function is the Lmna(-/-) mouse. We found that skeletal muscle growth and muscle satellite (stem) cell proliferation were both reduced in Lmna(-/-) mice. Lamins A and C associate with lamina-associated polypeptide 2 alpha (Lap2α) and the retinoblastoma gene product, pRb, to regulate cell cycle exit. We found Lap2α to be upregulated in Lmna(-/-) myoblasts (MBs). To specifically test the contribution of elevated Lap2α to the phenotype of Lmna(-/-) mice, we generated Lmna(-/-)Lap2α(-/-) mice. Lifespan and body mass were increased in Lmna(-/-)Lap2α(-/-) mice compared with Lmna(-/-). Importantly, the satellite cell proliferation defect was rescued, resulting in improved myogenesis. Lmna(-/-) MBs also exhibited increased levels of Smad2/3, which were abnormally distributed in the cell and failed to respond to TGFß1 stimulation as in control cells. However, using SIS3 to inhibit signaling via Smad3 reduced cell death and augmented MB fusion. Together, our results show that perturbed Lap2α/pRb and Smad2/3 signaling are important regulatory pathways mediating defective muscle growth in Lmna(-/-) mice, and that inhibition of either pathway alone or in combination can ameliorate this deleterious phenotype.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Lamina Tipo A/deficiencia , Proteínas de la Membrana/deficiencia , Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Mioblastos/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
5.
J Cell Sci ; 124(Pt 10): 1691-702, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21525034

RESUMEN

X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP-Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.


Asunto(s)
Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteína MioD/genética , Mioblastos/fisiología , Proteínas Nucleares/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción/antagonistas & inhibidores , Animales , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/metabolismo , Proteínas con Dominio LIM , Proteínas de la Membrana/metabolismo , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX3 , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
6.
Am J Pathol ; 176(6): 2891-900, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20413686

RESUMEN

A deficiency of the dysferlin protein results in limb girdle muscular dystrophy type 2B and Miyoshi myopathy, with resulting plasma membrane abnormalities in myofibers. Many patients show muscle inflammation, but the molecular mechanisms that initiate and perpetuate this inflammation are not well understood. We previously showed abnormal activation of macrophages and hypothesized that activation of the inflammasome pathway may play a role in disease progression. To test this, we studied the inflammasome molecular platform in dysferlin-deficient human and mouse muscle. Consistent with our model, components of the NACHT, LRR and PYD-containing proteins (NALP)-3 inflammasome pathway were specifically up-regulated and activated in dysferlin-deficient but not in dystrophin-deficient and normal muscle. We demonstrate for the first time that normal primary skeletal muscle cells are capable of secreting IL-1beta in response to combined treatment with lipopolysaccharide and the P2X7 receptor agonist, benzylated ATP, suggesting that not only immune cells but also muscle cells can actively participate in inflammasome formation. In addition, we show that dysferlin-deficient primary muscle cells express toll-like receptors (TLRs; TLR-2 and TLR-4) and can efficiently produce IL-1beta in response to lipopolysaccharide and benzylated ATP. These data indicate that skeletal muscle is an active contributor of IL-1beta and strategies that interfere with this pathway may be therapeutically useful for patients with limb girdle muscular dystrophy type 2B.


Asunto(s)
Inflamación/metabolismo , Proteínas de la Membrana , Proteínas Musculares , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacología , Adulto , Animales , Células Cultivadas , Progresión de la Enfermedad , Disferlina , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/fisiopatología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba , Adulto Joven
7.
Hum Mol Genet ; 17(19): 2921-33, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18621876

RESUMEN

The lamin B receptor (LBR) is an integral nuclear envelope protein that interacts with chromatin and has homology to sterol reductases. Mutations in LBR result in Pelger-Huët anomaly and HEM-Greenberg skeletal dysplasia, whereas in mice Lbr mutations result in ichthyosis. To further understand the function of the LBR and its role in disease, we derived a novel mouse model with a gene-trap insertion into the Lbr locus (Lbr(GT/GT)). Phenotypically, the Lbr(GT/GT) mice are similar to ichthyosis mice. The Lbr(GT/GT) granulocytes lack a mature segmented nucleus and have a block in late maturation. Despite these changes in nuclear morphology, the innate granulocyte immune function in the killing of Staphylococcus aureus bacteria appears to be intact. Granulocyte differentiation requires the transcription factor C/EBPepsilon. We identified C/EBPepsilon binding sites within the Lbr promoter and used EMSAs and luciferase assays to show that Lbr is transcriptionally regulated by C/EBPepsilon. Our findings indicate that the Lbr(GT/GT) mice are a model for Pelger-Huët anomaly and that Lbr, under transcriptional regulation of C/EBPepsilon, is necessary for morphological but not necessarily functional granulocyte maturation.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Neutrófilos/citología , Anomalía de Pelger-Huët/genética , Anomalía de Pelger-Huët/fisiopatología , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Forma del Núcleo Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional , Activación Neutrófila , Neutrófilos/fisiología , Anomalía de Pelger-Huët/embriología , Anomalía de Pelger-Huët/metabolismo , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Staphylococcus aureus/fisiología , Receptor de Lamina B
8.
J Virol ; 82(12): 5860-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18400857

RESUMEN

The human nuclear envelope proteins emerin and lamina-associated polypeptide 2alpha (LAP2alpha) have been proposed to aid in the early replication steps of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). However, whether these factors are essential for HIV-1 or MLV infection has been questioned. Prior studies in which conflicting results were obtained were highly dependent on RNA interference-mediated gene silencing. To shed light on these contradictory results, we examined whether HIV-1 or MLV could infect primary cells from mice deficient for emerin, LAP2alpha, or both emerin and LAP2alpha. We observed HIV-1 and MLV infectivity in mouse embryonic fibroblasts (MEFs) from emerin knockout, LAP2alpha knockout, or emerin and LAP2alpha double knockout mice to be comparable in infectivity to wild-type littermate-derived MEFs, indicating that both emerin and LAP2alpha were dispensable for HIV-1 and MLV infection of dividing, primary mouse cells. Because emerin has been suggested to be important for infection of human macrophages by HIV-1, we also examined HIV-1 transduction of macrophages from wild-type mice or knockout mice, but again we did not observe a difference in susceptibility. These findings prompted us to reexamine the role of human emerin in supporting HIV-1 and MLV infection. Notably, both viruses efficiently infected human cells expressing high levels of dominant-negative emerin. We thus conclude that emerin and LAP2alpha are not required for the early replication of HIV-1 and MLV in mouse or human cells.


Asunto(s)
Proteínas de Unión al ADN/genética , VIH-1/fisiología , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Infecciones por Retroviridae/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Humanos , Riñón/citología , Virus de la Leucemia Murina/patogenicidad , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
9.
Biochem Soc Trans ; 36(Pt 6): 1329-34, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19021550

RESUMEN

Recent findings that some 24 inherited diseases and anomalies are caused by defects in proteins of the NE (nuclear envelope) and lamina have resulted in a fundamental reassessment of the functions of the NE and underlying lamina. Instead of just regarding the NE and lamina as a molecular filtering device, regulating the transfer of macromolecules between the cytoplasm and nucleus, we now envisage the NE/lamina functioning as a key cellular 'hub' in integrating critical functions that include chromatin organization, transcriptional regulation, mechanical integrity of the cell and signalling pathways, as well as acting as a key component in the organization and function of the cytoskeleton.


Asunto(s)
Enfermedad , Desarrollo Embrionario , Lámina Nuclear/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Laminas/genética , Laminas/metabolismo , Músculo Estriado/patología
10.
Endocrinology ; 158(6): 1916-1928, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368537

RESUMEN

The cytokine leukemia inhibitory factor (LIF) is essential for rendering the uterus receptive for blastocyst implantation. In mice, LIF receptor expression (LIFR) is largely restricted to the uterine luminal epithelium (LE). LIF, secreted from the endometrial glands (GEs), binds to the LIFR, activating the Janus kinase-signal transducer and activation of transcription (STAT) 3 (Jak-Stat3) signaling pathway in the LE. JAK-STAT activation converts the LE to a receptive state so that juxtaposed blastocysts begin to implant. To specifically delete the LIFR in the LE, we derived a line of mice in which Cre recombinase was inserted into the endogenous lactoferrin gene (Ltf-Cre). Lactoferrin expression in the LE is induced by E2, and we demonstrate that Cre recombinase activity is restricted to the LE and GE. To determine the requirement of the LIFR in implantation, we derived an additional mouse line carrying a conditional (floxed) Lifrflx/flx gene. Crossing Ltf-Cre mice with Lifrflx/flx mice generated Lifrflx/Δ:LtfCre/+ females that were overtly normal but infertile. Many of these females, despite repeated matings, did not become pregnant. Unimplanted blastocysts were recovered from the Lifrflx/Δ:LtfCre/+ uteri and, when transferred to wild-type recipients, implanted normally, indicating that uterine receptivity rather than the embryo's competency is compromised. The loss of Lifr results in both the failure for STAT3 to translocate to the LE nuclei and a reduction in the expression of the LIF regulated gene Msx1 that regulates uterine receptivity. These results reveal that uterine expression of the LIFR is essential for embryo implantation and further define the components of the LIF signaling pathway necessary for effective implantation.


Asunto(s)
Implantación del Embrión/genética , Pérdida del Embrión/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Útero/metabolismo , Animales , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Embrión de Mamíferos , Epitelio/metabolismo , Femenino , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Embarazo , Transducción de Señal/genética
11.
Cell Rep ; 15(10): 2301-2312, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27239027

RESUMEN

Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFß signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Distrofia Muscular de Duchenne/patología , Mioblastos/patología , Animales , Línea Celular , Citometría de Flujo , Humanos , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Fenotipo , Transducción de Señal , Proteínas Smad/metabolismo
12.
Skelet Muscle ; 5: 24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26251696

RESUMEN

BACKGROUND: Loss-of-function mutations in the dysferlin gene (DYSF) result in a family of muscle disorders known collectively as the dysferlinopathies. Dysferlin-deficient muscle is characterized by inflammatory foci and macrophage infiltration with subsequent decline in muscle function. Whereas macrophages function to remove necrotic tissue in acute injury, their prevalence in chronic myopathy is thought to inhibit resolution of muscle regeneration. Two major classes of macrophages, classical (M1) and alternative (M2a), play distinct roles during the acute injury process. However, their individual roles in chronic myopathy remain unclear and were explored in this study. METHODS: To test the roles of the two macrophage phenotypes on regeneration in dysferlin-deficient muscle, we developed an in vitro co-culture model of macrophages and muscle cells. We assayed the co-cultures using ELISA and cytokine arrays to identify secreted factors and performed transcriptome analysis of molecular networks induced in the myoblasts. RESULTS: Dysferlin-deficient muscle contained an excess of M1 macrophage markers, compared with WT, and regenerated poorly in response to toxin injury. Co-culturing macrophages with muscle cells showed that M1 macrophages inhibit muscle regeneration whereas M2a macrophages promote it, especially in dysferlin-deficient muscle cells. Examination of soluble factors released in the co-cultures and transcriptome analysis implicated two soluble factors in mediating the effects: IL-1ß and IL-4, which during acute injury are secreted from M1 and M2a macrophages, respectively. To test the roles of these two factors in dysferlin-deficient muscle, myoblasts were treated with IL-4, which improved muscle differentiation, or IL-1ß, which inhibited it. Importantly, blockade of IL-1ß signaling significantly improved differentiation of dysferlin-deficient cells. CONCLUSIONS: We propose that the inhibitory effects of M1 macrophages on myogenesis are mediated by IL-1ß signals and suppression of the M1-mediated immune response may improve muscle regeneration in dysferlin deficiency. Our studies identify a potential therapeutic approach to promote muscle regeneration in dystrophic muscle.

13.
Skelet Muscle ; 5: 16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25987977

RESUMEN

BACKGROUND: Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. METHODS: Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. RESULTS: We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. CONCLUSIONS: The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis.

14.
Neuromuscul Disord ; 22(7): 648-58, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22560623

RESUMEN

Limb-girdle muscular dystrophy type 2B results from mutations in dysferlin, a membrane-associated protein involved in cellular membrane repair. Primary myoblast cultures derived from dysferlinopathy patients show reduced myogenic potential, suggesting that dysferlin may regulate myotube fusion and be required for muscle regeneration. These observations contrast with the findings that muscle develops normally in pre-symptomatic dysferlinopathy patients. To better understand the role of dysferlin in myogenesis, we investigated this process in vitro using cells derived from two mouse models of dysferlinopathy: SJL/J and A/J mice. We observed that myotubes derived from dysferlin-deficient muscle were of significantly smaller diameters, contained fewer myonuclei, and displayed reduced myogenic gene expression compared to dysferlin-sufficient cells. Together, these findings suggest that the absence of dysferlin from myoblasts is detrimental to myogenesis. Pro-inflammatory NFκB signaling was upregulated in dysferlin-deficient myotubes; the anti-inflammatory agent celastrol reduced the NFκB activation and improved myogenesis in dysferlin-deficient cultures. The results suggest that decreased myotube fusion in dysferlin deficiency is attributable to intrinsic inflammatory activation and can be improved using anti-inflammatory mediators.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de la Membrana/deficiencia , Desarrollo de Músculos/genética , Células Satélite del Músculo Esquelético/fisiología , Animales , Antiinflamatorios/farmacología , Calreticulina/genética , Calreticulina/metabolismo , Células Cultivadas , Disferlina , Regulación de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Desarrollo de Músculos/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Mutación/genética , FN-kappa B/metabolismo , Triterpenos Pentacíclicos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Triterpenos/farmacología
15.
Curr Top Dev Biol ; 84: 351-84, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19186248

RESUMEN

Eukaryotic cells compartmentalize their genetic material within the nucleus. The boundary separating the genetic material from the cytoplasm is the nuclear envelope (NE) and lamina. Historically, the NE was perceived as functioning primarily as a barrier regulating the entry and exit of macromolecules between the nucleus and cytoplasm via the nuclear pore complexes (NPCs) that traverse the nuclear membranes. However, recent findings have caused a fundamental reassessment with regard to NE and lamina functions. Evidence now points to the NE and lamina functioning as a "hub" in regulating and perhaps integrating critical cellular functions that include chromatin organization, transcriptional regulation, mechanical integrity of the cell, signaling pathways, as well as acting as a key component of the cytoskeleton. Such an integral role for the nuclear boundary has emerged from increased interest into the functions of the NE/lamina, which has been largely stimulated by the discovery that some 24 different diseases and anomalies are caused by defects in proteins of the NE and lamina.


Asunto(s)
Núcleo Celular/patología , Modelos Animales de Enfermedad , Enfermedad/etiología , Membrana Nuclear/patología , Poro Nuclear/patología , Animales , Núcleo Celular/genética , Humanos , Laminas/deficiencia , Laminas/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación , Membrana Nuclear/genética , Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progeria/genética , Progeria/patología , Síndrome
16.
Nat Cell Biol ; 10(11): 1341-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18849980

RESUMEN

Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Células Precursoras Eritroides/fisiología , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre/fisiología , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Células Epidérmicas , Lamina Tipo A/deficiencia , Lamina Tipo A/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células Madre/citología
17.
Development ; 134(7): 1385-95, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17329363

RESUMEN

MAN1 is an integral protein of the inner nuclear membrane of the nuclear envelope (NE). MAN1 interacts with SMAD transcription factors, which in turn are regulated by the Transforming growth factor beta (TGFbeta) superfamily of signaling molecules. To determine the role of MAN1 in mouse development, we used a gene-trap embryonic stem cell clone to derive mice with a functional mutation in MAN1 (Man1(GT/GT)). Expression of Man1 during early development is initially low but increases at embryonic day 9.5 (E9.5). Coincident with this increase, homozygous gene-trapped Man1 (Man1(GT/GT)) embryos die by E10.5. Examination of mutant embryos and tetraploid rescue experiments reveals that abnormal yolk-sac vascularization is the probable cause of lethality. We also established embryonic stem cell lines and their differentiated derivatives that are homozygous for the Man1(GT) allele. Using these lines, we show that the Man1(GT) allele results in increased phosphorylation, nuclear localization and elevated levels of SMAD transcriptional activity, predominantly of SMAD2/3, which are regulated by the ALK5 signaling pathway. Our studies identify a previously uncharacterized role for an integral nuclear envelope protein in the regulation of yolk-sac angiogenesis by TGFbeta signaling and reveal that the NE has an essential role in regulating transcription factor activity during mouse development.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Nucleares/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Saco Vitelino/embriología , Animales , Northern Blotting , Western Blotting , Proteínas de Unión al ADN , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas Nucleares/genética , Reacción en Cadena de la Polimerasa , Proteína Smad2/metabolismo
18.
J Neurochem ; 98(3): 723-34, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16787423

RESUMEN

The onset of spontaneous contraction in rat primary muscle cultures coincides with an increase in acetylcholinesterase (AChE) activity. In order to establish whether contractile activity modulates the rate of AChE transcript synthesis, and what elements of the gene are determinant, we examined the promoter and intron I in contracting muscle cultures. Ache genomic fragments attached to a luciferase reporter were transfected into muscle cultures that were either electrically stimulated or paralyzed with tetrodotoxin to enhance or inhibit contractions, respectively. Cultures transfected with intron I-containing constructs showed a 2-fold increase in luciferase activity following electrical stimulation, compared to tetrodotoxin treatment, suggesting that this region contains elements responding to contractile activity. Deleting a 780 bp distal region within intron I, containing an N-box element at +890 bp, or introducing a 2-bp mutation within its core sequence, eliminated the contraction-induced response. In contrast, mutating an N-box element at +822 bp had no effect on the response. Furthermore, co-transfecting a dominant negative GA-binding protein (GABP), a transcription factor known to selectively bind N-box elements, reduced the stimulation-mediated increase. Our results suggest that the N-box within intron I at +890 bp is a regulatory element important in the transcriptional response of Ache to contractile activity in muscle.


Asunto(s)
Acetilcolinesterasa/metabolismo , Intrones/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/enzimología , Acetilcolinesterasa/biosíntesis , Acetilcolinesterasa/genética , Acetilcolinesterasa/fisiología , Animales , Células Cultivadas , Estimulación Eléctrica/métodos , Humanos , Intrones/genética , Ratones , Contracción Muscular/genética , Mutación , Ratas , Activación Transcripcional/genética , Activación Transcripcional/fisiología
19.
J Neurochem ; 90(5): 1059-67, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15312161

RESUMEN

Nuclear factor of activated T-cells (NFAT) plays a role in the response of muscle to chronic contractile activity that can result in fiber type switching and hypertrophy. These effects are due in part to activation of target genes following Ca2+-mediated nuclear translocation of NFAT. Acetylcholinesterase (AChE), a component of the neuromuscular junction, is regulated by chronic muscle and nerve activity through changes in intracellular Ca2+, suggesting that the Ache gene may be a potential downstream target of NFAT signaling. To determine whether elements of the Ache promoter are modulated by NFAT, we transiently co-expressed reporter constructs driven by fragments of the Ache promoter with an NFATc1 that is constitutively translocated to the nucleus [NFATc1(S --> A)] in rat muscle cultures. NFATc1 potentiated reporter activity when co-transfected with constructs containing Ache genomic elements from -1280 to -490 bp upstream of transcription initiation. Electrophoretic mobility shift assays demonstrated strong binding to a potential NFAT element at -793 bp and weaker binding to one at -678 bp. Co-transfection of promoter fragments, containing the binding sites at -793 and at -678 bp, with NFATc1(S --> A) potentiated reporter activity, supporting sites of interaction with NFAT. Our data suggests a role for NFAT as a modulator of Ache gene transcription.


Asunto(s)
Acetilcolinesterasa/genética , Proteínas de Unión al ADN/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteínas Nucleares , Regiones Promotoras Genéticas/efectos de los fármacos , Factores de Transcripción/farmacología , Animales , Animales Recién Nacidos , Sitios de Unión/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayo de Cambio de Movilidad Electroforética/métodos , Genes Reporteros/fisiología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mutagénesis , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factores de Transcripción NFATC , Péptido Natriurético Encefálico/farmacología , Ratas , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA