Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Environ Sci (China) ; 122: 83-91, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35717093

RESUMEN

We investigated variations of PM2.5 and water-soluble inorganic ions chemical characteristics at nine urban and rural sites in China using ground-based observations. From 2015 to 2019, mean PM2.5 concentration across all sites decreased by 41.9 µg/m3 with a decline of 46% at urban sites and 28% at rural sites, where secondary inorganic aerosol (SIAs) contributed to 21% (urban sites) and 17% (rural sites) of the decreased PM2.5. SIAs concentrations underwent a decline at urban locations, while sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) decreased by 49.5%, 31.3% and 31.6%, respectively. However, only SO42- decreased at rural sites, NO3- increased by 21% and NH4+ decreased slightly. Those changes contributed to an overall SIAs increase in 2019. Higher molar ratios of NO3- to SO42- and NH4+ to SO42- were observed at urban sites than rural sites, being highest in the heavily polluted days. Mean molar ratios of NH3/NHx were higher in 2019 than 2015 at both urban and rural sites, implying increasing NHx remained as free NH3. Our observations indicated a slower transition from sulfate-driven to nitrate-driven aerosol pollution and less efficient control of NOx than SO2 related aerosol formation in rural regions than urban regions. Moreover, the common factor at urban and rural sites appears to be a combination of lower SO42- levels and an increasing fraction of NO3- to PM2.5 under NH4+-rich conditions. Our findings imply that synchronous reduction in NOx and NH3 emissions especially rural areas would be effective to mitigate NO3--driven aerosol pollution.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Nitratos/análisis , Óxidos de Nitrógeno , Material Particulado/análisis , Estaciones del Año , Sulfatos/análisis , Agua
2.
Environ Sci Technol ; 55(12): 7776-7785, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34061518

RESUMEN

Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m-2 s-1) versus only the urban area (1.0 ng m-2 s-1) and both urban and agricultural areas (2.7 ng m-2 s-1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Colorado , Ecosistema , Monitoreo del Ambiente
3.
Environ Sci Technol ; 53(4): 1822-1833, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30645946

RESUMEN

Ammonia (NH3) is the predominant alkaline gas in the atmosphere contributing to formation of fine particles-a leading environmental cause of increased morbidity and mortality worldwide. Prior findings suggest that NH3 in the urban atmosphere derives from a complex mixture of agricultural (mainly livestock production and fertilizer application) and nonagricultural (e.g., urban waste, fossil fuel-related emissions) sources; however, a citywide holistic assessment is hitherto lacking. Here we show that NH3 from nonagricultural sources rivals agricultural NH3 source contributions in the Shanghai urban atmosphere. We base our conclusion on four independent approaches: (i) a full-year operation of a passive NH3 monitoring network at 14 locations covering urban, suburban, and rural landscapes; (ii) model-measurement comparison of hourly NH3 concentrations at a pair of urban and rural supersites; (iii) source-specific NH3 measurements from emission sources; and (iv) localized isotopic signatures of NH3 sources integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates of ambient NH3. Results indicate that nonagricultural sources and agricultural sources are both important contributors to NH3 in the urban atmosphere. These findings highlight opportunities to limit NH3 emissions from nonagricultural sources to help curb PM2.5 pollution in urban China.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Teorema de Bayes , China , Monitoreo del Ambiente
4.
Proc Natl Acad Sci U S A ; 113(21): 5874-9, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162336

RESUMEN

Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions.


Asunto(s)
Amoníaco/análisis , Contaminantes Ambientales/análisis , Nitratos/análisis , Ácido Nítrico/análisis , Óxidos de Nitrógeno/análisis , Nitrógeno/análisis , Agricultura/tendencias , Amoníaco/química , Atmósfera/química , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/química , Humanos , Nitratos/química , Ácido Nítrico/química , Nitrógeno/química , Óxidos de Nitrógeno/química , Oxidación-Reducción , Estados Unidos , Emisiones de Vehículos/análisis
5.
Environ Manage ; 64(5): 626-639, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31583444

RESUMEN

Agricultural emissions are the primary source of ammonia (NH3) deposition in Rocky Mountain National Park (RMNP), a Class I area, that is granted special air quality protections under the Clean Air Act. Between 2014 and 2016, the pilot phase of the Colorado agricultural nitrogen early warning system (CANEWS) was developed for agricultural producers to voluntarily and temporarily minimize emissions of NH3 during periods of upslope winds. The CANEWS was created using trajectory analyses driven by outputs from an ensemble of numerical weather forecasts together with the climatological expertize of human forecasters. Here, we discuss the methods for the CANEWS and offer preliminary analyses of 33 months of the CANEWS based on atmospheric deposition data from two sites in RMNP as well as responses from agricultural producers after warnings were issued. Results showed that the CANEWS accurately predicted 6 of 9 high N deposition weeks at a lower-elevation observation site, but only 4 of 11 high N deposition weeks at a higher-elevation site. Sixty agricultural producers from 39 of Colorado's agricultural operations volunteered for the CANEWS, and a two-way line of communication between agricultural producers and scientists was formed. For each warning issued, an average of 23 producers responded to a postwarning survey. Over 75% of responding CANEWS participants altered their practices after an alert. While the current effort was insufficient to reduce atmospheric deposition, we were encouraged by the collaborative spirit between agricultural, scientific, and resource management communities. Solving a broad and complex social-ecological problem requires both a technological approach, such as the CANEWS, and collaboration and trust from all participants, including agricultural producers, land managers, university researchers, and environmental agencies.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Agricultura , Colorado , Monitoreo del Ambiente , Humanos , Nitrógeno , Parques Recreativos
6.
Environ Sci Technol ; 52(3): 1665-1674, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29244948

RESUMEN

Levoglucosan (LG) has been widely identified as a specific marker for biomass burning (BB) sources and frequently utilized in estimating the BB contribution to atmospheric fine particles all over the world. However, this study provides direct evidence to show that coal combustion (CC) is also a source of LG, especially in the wintertime in Northern China, based on both source testing and ambient measurement. Our results show that low-temperature residential CC could emit LG with emission factors (EF) ranging from 0.3 to 15.9 mg kg-1. Ratios of LG to its isomers, mannosan and galactosan, differ between CC and BB emissions, and the wintertime ratios in Beijing ambient PM2.5 and source-specific tracers including carbon isotopic signatures all indicated a significant contribution from CC to ambient levoglucosan in winter in Beijing. The results suggest that LG cannot be used as a distinct source marker for biomass burning in special cases such as some cities in the northern China, where coal is still widely used in the residential and industrial sectors. Biomass burning sources could be overestimated, although such an over-estimation could vary spatially and temporally.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Beijing , China , Ciudades , Monitoreo del Ambiente , Glucosa/análogos & derivados , Material Particulado
7.
Environ Sci Technol ; 48(19): 11127-36, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25191968

RESUMEN

Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOCg) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW. We present field evidence for the influence of controllable ALW on the lifetimes and atmospheric budgets of reactive organic gases and note the role of ALW in the formation of secondary organic aerosol (SOA). Nitrate is expected to increase in importance due to increased emissions of nitrate precursors, as well as policies aimed at reducing sulfur emissions. We argue that the impacts of increased particulate nitrate in future climate and air quality scenarios may be under predicted because they do not account for the increased potential for SOA formation in nitrate-derived ALW, nor do they account for the impacts of this ALW on reactive gas budgets and gas-phase photochemistry.


Asunto(s)
Aerosoles/química , Gases/química , Nitratos/química , Compuestos Orgánicos/química , Agua/análisis , Clima , Gases/análisis , Italia , Nitratos/análisis , Óxidos de Nitrógeno , Fotoquímica
10.
Environ Sci Technol ; 47(9): 4172-80, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23586904

RESUMEN

Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 µg m(-3), 7 µg m(-3), and 22 µg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 µg L(-1)), iron (Fe, 88 µg L(-1)), and lead (Pb, 77 µg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 µm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.


Asunto(s)
Lluvia Ácida/análisis , Contaminantes Atmosféricos/análisis , Metales/análisis , Oligoelementos/análisis , Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno , Espectrometría de Masas/métodos , Metales/toxicidad , Microscopía Electrónica de Transmisión , Oligoelementos/toxicidad
11.
J Air Waste Manag Assoc ; 63(12): 1422-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24558705

RESUMEN

Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.


Asunto(s)
Compuestos Orgánicos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles , Ciudades , Tiempo (Meteorología)
12.
J Air Waste Manag Assoc ; 63(11): 1245-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24344569

RESUMEN

Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Amoníaco/análisis , Modelos Teóricos , Colorado
13.
Sci Total Environ ; 864: 160869, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521624

RESUMEN

Ammonia (NH3) measurements were performed with a mobile platform deploying a cavity ring-down spectroscopy NH3 analyzer in Beijing. The transect and loop sampling strategy revealed that the Beijing urban area is more strongly affected by NH3 emissions than surrounding areas. Although average enhancements of on-road NH3 were small compared to background levels, traffic emissions clearly dominated city enhancements of NH3, carbon dioxide (CO2), acetaldehyde and acetone. Increments of on-road NH3 ranged between 5.1 ppb and 11.4 ppb in urban areas, representing an enhancement of 20.6 % to 47.9 % over the urban background. The vehicle NH3:CO2 emission ratio was 0.26 ppb/ppm, about a factor of 1.5 higher than the value derived from the available emission inventory. The obtained NH3 emission factor was approximately 306.9 mg/kg. If the annual gasoline consumption in Beijing is accurate, annual NH3 emissions from vehicles are estimated at 1.5 Gg. The influx and outflux of NH3 in Beijing during monitoring periods fluctuated due to variations of wind direction (WD), wind speed (WS), and planetary boundary layer height (PBLH). Net fluxes at the 4th Ring Road were larger than zero, suggesting that local emissions were important in urban Beijing. Negative net fluxes at the 6th Ring Road reveal a large amount of NH3 transported from agricultural regions south of Beijing lost during transport across the city, for example by deposition or particle formation in the city. Our analyses have important implications for regional NH3 emission estimates and for improving vehicular NH3 emission inventory allocations.

14.
J Air Waste Manag Assoc ; 73(12): 914-929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37850691

RESUMEN

Carlsbad Caverns National Park (CAVE), located in southeastern New Mexico, experiences elevated ground-level ozone (O3) exceeding the National Ambient Air Quality Standard (NAAQS) of 70 ppbv. It is situated adjacent to the Permian Basin, one of the largest oil and gas (O&G) producing regions in the US. In 2019, the Carlsbad Caverns Air Quality Study (CarCavAQS) was conducted to examine impacts of different sources on ozone precursors, including nitrogen oxides (NOx) and volatile organic compounds (VOCs). Here, we use positive matrix factorization (PMF) analysis of speciated VOCs to characterize VOC sources at CAVE during the study. Seven factors were identified. Three factors composed largely of alkanes and aromatics with different lifetimes were attributed to O&G development and production activities. VOCs in these factors were typical of those emitted by O&G operations. Associated residence time analyses (RTA) indicated their contributions increased in the park during periods of transport from the Permian Basin. These O&G factors were the largest contributor to VOC reactivity with hydroxyl radicals (62%). Two PMF factors were rich in photochemically generated secondary VOCs; one factor contained species with shorter atmospheric lifetimes and one with species with longer lifetimes. RTA of the secondary factors suggested impacts of O&G emissions from regions farther upwind, such as Eagle Ford Shale and Barnett Shale formations. The last two factors were attributed to alkenes likely emitted from vehicles or other combustion sources in the Permian Basin and regional background VOCs, respectively.Implications: Carlsbad Caverns National Park experiences ground-level ozone exceeding the National Ambient Air Quality Standard. Volatile organic compounds are critical precursors to ozone formation. Measurements in the Park identify oil and gas production and development activities as the major contributors to volatile organic compounds. Emissions from the adjacent Permian Basin contributed to increases in primary species that enhanced local ozone formation. Observations of photochemically generated compounds indicate that ozone was also transported from shale formations and basins farther upwind. Therefore, emission reductions of volatile organic compounds from oil and gas activities are important for mitigating elevated O3 in the region.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Cuevas , Parques Recreativos , Ozono/análisis , Monitoreo del Ambiente , China , Emisiones de Vehículos/análisis
15.
Environ Sci Technol ; 46(8): 4312-22, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22435467

RESUMEN

Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.


Asunto(s)
Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Tiempo (Meteorología) , Contaminantes Atmosféricos/química , California , Monitoreo del Ambiente , Nitrógeno/química , Compuestos Orgánicos/química , Solubilidad , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Espectrometría de Masas en Tándem/métodos , Agua/química
16.
Sci Total Environ ; 830: 154740, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341854

RESUMEN

Atmospheric deposition is an important pathway for the input of anthropogenic and natural nutrients to terrestrial and aquatic ecosystems. However, previous measurements focused mainly on hotspot locations, ignoring the fact that the deposition magnitudes of various nutrient species (e.g., nitrogen (N), phosphorus (P)) at a national scale should be investigated jointly. To better characterize national scale bulk deposition, precipitation samples were collected at 41 sites across China from September 2015 to August 2016 and September 2017 to August 2018. The bulk deposition fluxes of total nitrogen (TN) and total phosphorus (TP) over the network were 27.5 kg N ha-1 yr-1 and 0.92 kg P ha-1 yr-1, respectively. Contributions of NH4+, NO3-, and dissolved organic nitrogen (DON) to TN averaged 32%, 32%, and 36%, respectively. Significant spatial and seasonal variations in concentrations and deposition fluxes of all nutrient species were observed reflecting effects of local reactive nitrogen (Nr) and P emissions and rainfall amount. Major sources were energy resource consumption for NO3-, agricultural activities for NH4+, and a mixed contribution of both anthropogenic and natural sources for DON and TP. Atmospheric N and P deposition represent important external nutrient inputs to ecosystems and a high ratio of TN to TP (29.9) may induce relative P-limitation and further increase the risk of eutrophication. This work reveals a new map of atmospheric N and P deposition and identifies regions where emissions should be controlled to mitigate long-term impacts of atmospheric deposition over China.


Asunto(s)
Nitrógeno , Fósforo , China , Ecosistema , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis
17.
J Air Waste Manag Assoc ; 72(9): 951-968, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35254216

RESUMEN

Dinosaur National Monument (DINO) is located near the northeastern edge of the Uinta Basin and often experiences elevated levels of wintertime ground-level ozone. Previous studies have shown that high ozone mixing ratios in the Uinta Basin are driven by elevated levels of volatile organic compounds (VOCs) and nitrogen oxides (NOx) from regional oil and gas development coupled with temperature inversions and enhanced photochemistry from persistent snow cover. Here, we show that persistent snow cover and temperature inversions, along with abundant ammonia, also lead to wintertime haze in this region. A study was conducted at DINO from November 2018 through May 2020 where ozone, speciated fine and coarse aerosols, inorganic gases, and VOCs were measured. Three National Ambient Air Quality Standards (NAAQS) ozone exceedances were observed in the first winter, and no exceedances were observed in the second winter. In contrast, elevated levels of particulate matter were observed both winters, with 24-h averaged particle light extinction exceeding 100 Mm-1. These haze events were dominated by ammonium nitrate, and particulate organics were highly correlated with ammonium nitrate. Ammonium nitrate formation was limited by nitric acid in winter. As such, reductions in regional NOx emissions should reduce haze levels and improve visibility at DINO in winter. Long-term measurements of particulate matter from nearby Vernal, Utah, suggest that visibility impairment is a persistent issue in the Uinta Basin in winter. From April through October 2019, relatively clean conditions occurred, with average particle extinction of ~10 Mm-1. During this period, ammonium nitrate concentrations were lower by more than an order of magnitude, and contributions from coarse mass and soil to haze levels increased. VOC markers indicated that the high levels of observed pollutants in winter were likely from local sources related to oil and gas extraction activities.Implications: Elevated ground-level ozone and haze levels were observed at Dinosaur National Monument in winter. Haze episodes were dominated by ammonium nitrate, with 24-h averaged particle light extinction exceeding 100 Mm-1, reducing visual range near the surface to ~35 km. Despite elevated ammonium nitrate concentrations, additional gas-phase ammonia was available, such that any increase in NOx emissions in the region is likely to lead to even greater haze levels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dinosaurios , Ozono , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Amoníaco/análisis , Animales , Monitoreo del Ambiente , Ozono/análisis , Material Particulado/análisis , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis
18.
Environ Pollut ; 281: 117027, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857715

RESUMEN

The Clean Air Action implemented by the Chinese government in 2013 has greatly improved air quality in the North China Plain (NCP). In this work, we report changes in the chemical components of atmospheric fine particulate matter (PM2.5) at four NCP sampling sites from 2012/2013 to 2017 to investigate the impacts and drivers of the Clean Air Action on aerosol chemistry, especially for secondary inorganic aerosols (SIA). During the observation period, the concentrations of PM2.5 and its chemical components (especially SIA, organic carbon (OC), and elemental carbon (EC)) and the frequency of polluted days (daily PM2.5 concentration ≥ 75 µg m-3) in the NCP, declined significantly at all four sites. Asynchronized reduction in SIA components (large decreases in SO42- with stable or even increased NO3- and NH4+) was observed in urban Beijing, revealing a shift of the primary form of SIA, which suggested the fractions of NO3- increased more rapidly than SO42- during PM2.5 pollution episodes, especially in 2016 and 2017. In addition, unexpected increases in the sulfur oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) were observed among sites and across years in the substantially decreased PM2.5 levels. They were largely determined by secondary aerosol precursors (i.e. decreased SO2 and NO2), photochemical oxidants (e.g. increased O3), temperature, and relative humidity via gas-phase and heterogeneous reactions. Our results not only highlight the effectiveness of the Action Plan for improving air quality in the NCP, but also suggest an increasing importance of SIA in determining PM2.5 concentration and composition.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
19.
Environ Sci Technol Lett ; 8(1): 32-38, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37566379

RESUMEN

This study investigates the concentrations and δ15N values of NH3 in Beijing during and after the 2020 COVID-19 lockdown. Higher NH3 concentrations and lower δ15N-NH3(measured) were observed at most sites in 2020 compared to 2017. Except for a site inside a tunnel, NH3 concentrations did not increase significantly after the lockdown had ended compared to those during the lockdown, while δ15N-NH3(measured) increased by 2.1-9.9‰. Nonagricultural sources (fossil fuel and urban waste) overall contributed 81% and 62% of NH3 at on-road (tunnel interior) and nonroad (CAU) sites in 2020, respectively, comparable to those in 2017 (without significant difference). The contribution of nonagricultural sources slightly increased after the lockdown compared to the contribution during the lockdown at the nonroad site and hardly changed at the tunnel interior site. Our results suggest that (1) unfavorable meteorological conditions, especially lower boundary layer heights and changes in regional transport patterns, might play a more important role than reduced anthropogenic emissions in the temporal variations of Beijing NH3 and (2) the effect of reduced anthropogenic emissions, during the COVID-19 outbreak or with the future implementation of emission control strategies, on atmospheric NH3 can be better demonstrated by isotope-based source apportionment of NH3, rather than only by changes in NH3 concentrations.

20.
Atmos Chem Phys ; 21(17)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34675968

RESUMEN

The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA