RESUMEN
The transcription factor PDX1 plays a critical role during ß-cell development and in glucose-induced insulin gene transcription in adult ß-cells. Acute glucose exposure leads to translocalization of PDX1 to the nucleoplasm, whereas under conditions of oxidative stress, PDX1 shuttles from the nucleus to the cytosol. Here we show that cytosolic PDX1 expression correlated with ß-cell failure in diabetes. In isolated islets from patients with type 2 diabetes and from diabetic mice, we found opposite regulation of insulin and PDX1 mRNA; insulin was decreased in diabetes, but PDX1 was increased. This suggests that elevated PDX1 mRNA levels may be insufficient to regulate insulin. In diabetic islets, PDX1 protein was localized in the cytosol, whereas in non-diabetic controls, PDX1 was in the nucleus. In contrast, overexpression of either IL-1 receptor antagonist or shuttling-deficient PDX1 restored ß-cell survival and function and PDX1 nuclear localization. Our results show that nuclear localization of PDX1 is essential for a functional ß-cell and provides a novel mechanism of the protective effect of IL-1 receptor antagonist on ß-cell survival and function.
Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Transactivadores/metabolismo , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/metabolismo , Ratas , Transcripción GenéticaRESUMEN
Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.