RESUMEN
Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.
Asunto(s)
Población Negra/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Genómica , Femenino , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Uganda/epidemiología , Secuenciación Completa del GenomaRESUMEN
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an â¼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Asunto(s)
Regiones no Traducidas 3' , Elementos Alu , ARN Bicatenario , Elementos Alu/genética , Humanos , ARN Bicatenario/genética , Regiones no Traducidas 3'/genética , Intrones/genética , Mutagénesis Insercional/genética , Homocigoto , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve around the world, generating new variants that are of concern on the basis of their potential for altered transmissibility, pathogenicity, and coverage by vaccines and therapeutic agents1-5. Here we show that serum samples taken from twenty human volunteers, two or four weeks after their second dose of the BNT162b2 vaccine, neutralize engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the recently identified B.1.617.1, B.1.617.2, B.1.618 (all of which were first identified in India) or B.1.525 (first identified in Nigeria) lineages. Geometric mean plaque reduction neutralization titres against the variant viruses-particularly the B.1.617.1 variant-seemed to be lower than the titre against the USA-WA1/2020 virus, but all sera tested neutralized the variant viruses at titres of at least 1:40. The susceptibility of the variant strains to neutralization elicited by the BNT162b2 vaccine supports mass immunization as a central strategy to end the coronavirus disease 2019 (COVID-19) pandemic globally.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Chlorocebus aethiops , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Células Vero , Vacunas de ARNmRESUMEN
BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Vacuna BNT162 , Linfocitos T CD8-positivos/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica , Interferón gamma/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Adulto JovenRESUMEN
BACKGROUND: The emergence of immune-escape variants of severe acute respiratory syndrome coronavirus 2 warrants the use of sequence-adapted vaccines to provide protection against coronavirus disease 2019. METHODS: In an ongoing phase 3 trial, adults older than 55 years who had previously received three 30-µg doses of the BNT162b2 vaccine were randomly assigned to receive 30 µg or 60 µg of BNT162b2, 30 µg or 60 µg of monovalent B.1.1.529 (omicron) BA.1-adapted BNT162b2 (monovalent BA.1), or 30 µg (15 µg of BNT162b2 + 15 µg of monovalent BA.1) or 60 µg (30 µg of BNT162b2 + 30 µg of monovalent BA.1) of BA.1-adapted BNT162b2 (bivalent BA.1). Primary objectives were to determine superiority (with respect to 50% neutralizing titer [NT50] against BA.1) and noninferiority (with respect to seroresponse) of the BA.1-adapted vaccines to BNT162b2 (30 µg). A secondary objective was to determine noninferiority of bivalent BA.1 to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain. Exploratory analyses assessed immune responses against omicron BA.4, BA.5, and BA.2.75 subvariants. RESULTS: A total of 1846 participants underwent randomization. At 1 month after vaccination, bivalent BA.1 (30 µg and 60 µg) and monovalent BA.1 (60 µg) showed neutralizing activity against BA.1 superior to that of BNT162b2 (30 µg), with NT50 geometric mean ratios (GMRs) of 1.56 (95% confidence interval [CI], 1.17 to 2.08), 1.97 (95% CI, 1.45 to 2.68), and 3.15 (95% CI, 2.38 to 4.16), respectively. Bivalent BA.1 (both doses) and monovalent BA.1 (60 µg) were also noninferior to BNT162b2 (30 µg) with respect to seroresponse against BA.1; between-group differences ranged from 10.9 to 29.1 percentage points. Bivalent BA.1 (either dose) was noninferior to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain, with NT50 GMRs of 0.99 (95% CI, 0.82 to 1.20) and 1.30 (95% CI, 1.07 to 1.58), respectively. BA.4-BA.5 and BA.2.75 neutralizing titers were numerically higher with 30-µg bivalent BA.1 than with 30-µg BNT162b2. The safety profile of either dose of monovalent or bivalent BA.1 was similar to that of BNT162b2 (30 µg). Adverse events were more common in the 30-µg monovalent-BA.1 (8.5%) and 60-µg bivalent-BA.1 (10.4%) groups than in the other groups (3.6 to 6.6%). CONCLUSIONS: The candidate monovalent or bivalent omicron BA.1-adapted vaccines had a safety profile similar to that of BNT162b2 (30 µg), induced substantial neutralizing responses against ancestral and omicron BA.1 strains, and, to a lesser extent, neutralized BA.4, BA.5, and BA.2.75 strains. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04955626.).
Asunto(s)
Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Vacunas Combinadas , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunación , Vacunas Combinadas/uso terapéutico , Persona de Mediana EdadRESUMEN
BACKGROUND: Respiratory syncytial virus (RSV) infection causes considerable illness in older adults. The efficacy and safety of an investigational bivalent RSV prefusion F protein-based (RSVpreF) vaccine in this population are unknown. METHODS: In this ongoing, phase 3 trial, we randomly assigned, in a 1:1 ratio, adults (≥60 years of age) to receive a single intramuscular injection of RSVpreF vaccine at a dose of 120 µg (RSV subgroups A and B, 60 µg each) or placebo. The two primary end points were vaccine efficacy against seasonal RSV-associated lower respiratory tract illness with at least two or at least three signs or symptoms. The secondary end point was vaccine efficacy against RSV-associated acute respiratory illness. RESULTS: At the interim analysis (data-cutoff date, July 14, 2022), 34,284 participants had received RSVpreF vaccine (17,215 participants) or placebo (17,069 participants). RSV-associated lower respiratory tract illness with at least two signs or symptoms occurred in 11 participants in the vaccine group (1.19 cases per 1000 person-years of observation) and 33 participants in the placebo group (3.58 cases per 1000 person-years of observation) (vaccine efficacy, 66.7%; 96.66% confidence interval [CI], 28.8 to 85.8); 2 cases (0.22 cases per 1000 person-years of observation) and 14 cases (1.52 cases per 1000 person-years of observation), respectively, occurred with at least three signs or symptoms (vaccine efficacy, 85.7%; 96.66% CI, 32.0 to 98.7). RSV-associated acute respiratory illness occurred in 22 participants in the vaccine group (2.38 cases per 1000 person-years of observation) and 58 participants in the placebo group (6.30 cases per 1000 person-years of observation) (vaccine efficacy, 62.1%; 95% CI, 37.1 to 77.9). The incidence of local reactions was higher with vaccine (12%) than with placebo (7%); the incidences of systemic events were similar (27% and 26%, respectively). Similar rates of adverse events through 1 month after injection were reported (vaccine, 9.0%; placebo, 8.5%), with 1.4% and 1.0%, respectively, considered by the investigators to be injection-related. Severe or life-threatening adverse events were reported in 0.5% of vaccine recipients and 0.4% of placebo recipients. Serious adverse events were reported in 2.3% of participants in each group through the data-cutoff date. CONCLUSIONS: RSVpreF vaccine prevented RSV-associated lower respiratory tract illness and RSV-associated acute respiratory illness in adults (≥60 years of age), without evident safety concerns. (Funded by Pfizer; RENOIR ClinicalTrials.gov number, NCT05035212; EudraCT number, 2021-003693-31.).
Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Anciano , Humanos , Anticuerpos Antivirales , Método Doble Ciego , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/uso terapéutico , Eficacia de las Vacunas , Resultado del Tratamiento , Persona de Mediana Edad , Inyecciones Intramusculares , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & controlRESUMEN
BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).
Asunto(s)
Vacuna BNT162 , COVID-19 , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas/efectos adversos , Vacunas/uso terapéutico , Inmunogenicidad Vacunal , Resultado del Tratamiento , Eficacia de las VacunasRESUMEN
BACKGROUND: Moderate-to-severe hemophilia B is treated with lifelong, continuous coagulation factor IX replacement to prevent bleeding. Gene therapy for hemophilia B aims to establish sustained factor IX activity, thereby protecting against bleeding without burdensome factor IX replacement. METHODS: In this open-label, phase 3 study, after a lead-in period (≥6 months) of factor IX prophylaxis, we administered one infusion of adeno-associated virus 5 (AAV5) vector expressing the Padua factor IX variant (etranacogene dezaparvovec; 2×1013 genome copies per kilogram of body weight) to 54 men with hemophilia B (factor IX activity ≤2% of the normal value) regardless of preexisting AAV5 neutralizing antibodies. The primary end point was the annualized bleeding rate, evaluated in a noninferiority analysis comparing the rate during months 7 through 18 after etranacogene dezaparvovec treatment with the rate during the lead-in period. Noninferiority of etranacogene dezaparvovec was defined as an upper limit of the two-sided 95% Wald confidence interval of the annualized bleeding rate ratio that was less than the noninferiority margin of 1.8. Superiority, additional efficacy measures, and safety were also assessed. RESULTS: The annualized bleeding rate decreased from 4.19 (95% confidence interval [CI], 3.22 to 5.45) during the lead-in period to 1.51 (95% CI, 0.81 to 2.82) during months 7 through 18 after treatment, for a rate ratio of 0.36 (95% Wald CI, 0.20 to 0.64; P<0.001), demonstrating noninferiority and superiority of etranacogene dezaparvovec as compared with factor IX prophylaxis. Factor IX activity had increased from baseline by a least-squares mean of 36.2 percentage points (95% CI, 31.4 to 41.0) at 6 months and 34.3 percentage points (95% CI, 29.5 to 39.1) at 18 months after treatment, and usage of factor IX concentrate decreased by a mean of 248,825 IU per year per participant in the post-treatment period (P<0.001 for all three comparisons). Benefits and safety were observed in participants with predose AAV5 neutralizing antibody titers of less than 700. No treatment-related serious adverse events occurred. CONCLUSIONS: Etranacogene dezaparvovec gene therapy was superior to prophylactic factor IX with respect to the annualized bleeding rate, and it had a favorable safety profile. (Funded by uniQure and CSL Behring; HOPE-B ClinicalTrials.gov number, NCT03569891.).
Asunto(s)
Factor IX , Terapia Genética , Hemofilia B , Humanos , Masculino , Factor IX/genética , Factor IX/uso terapéutico , Terapia Genética/métodos , Hemofilia B/complicaciones , Hemofilia B/genética , Hemofilia B/terapia , Hemorragia/etiología , Hemorragia/terapia , Vectores Genéticos/administración & dosificaciónRESUMEN
BACKGROUND: Whether vaccination during pregnancy could reduce the burden of respiratory syncytial virus (RSV)-associated lower respiratory tract illness in newborns and infants is uncertain. METHODS: In this phase 3, double-blind trial conducted in 18 countries, we randomly assigned, in a 1:1 ratio, pregnant women at 24 through 36 weeks' gestation to receive a single intramuscular injection of 120 µg of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine or placebo. The two primary efficacy end points were medically attended severe RSV-associated lower respiratory tract illness and medically attended RSV-associated lower respiratory tract illness in infants within 90, 120, 150, and 180 days after birth. A lower boundary of the confidence interval for vaccine efficacy (99.5% confidence interval [CI] at 90 days; 97.58% CI at later intervals) greater than 20% was considered to meet the success criterion for vaccine efficacy with respect to the primary end points. RESULTS: At this prespecified interim analysis, the success criterion for vaccine efficacy was met with respect to one primary end point. Overall, 3682 maternal participants received vaccine and 3676 received placebo; 3570 and 3558 infants, respectively, were evaluated. Medically attended severe lower respiratory tract illness occurred within 90 days after birth in 6 infants of women in the vaccine group and 33 infants of women in the placebo group (vaccine efficacy, 81.8%; 99.5% CI, 40.6 to 96.3); 19 cases and 62 cases, respectively, occurred within 180 days after birth (vaccine efficacy, 69.4%; 97.58% CI, 44.3 to 84.1). Medically attended RSV-associated lower respiratory tract illness occurred within 90 days after birth in 24 infants of women in the vaccine group and 56 infants of women in the placebo group (vaccine efficacy, 57.1%; 99.5% CI, 14.7 to 79.8); these results did not meet the statistical success criterion. No safety signals were detected in maternal participants or in infants and toddlers up to 24 months of age. The incidences of adverse events reported within 1 month after injection or within 1 month after birth were similar in the vaccine group (13.8% of women and 37.1% of infants) and the placebo group (13.1% and 34.5%, respectively). CONCLUSIONS: RSVpreF vaccine administered during pregnancy was effective against medically attended severe RSV-associated lower respiratory tract illness in infants, and no safety concerns were identified. (Funded by Pfizer; MATISSE ClinicalTrials.gov number, NCT04424316.).
Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Anticuerpos Antivirales , Enfermedades Transmisibles/terapia , Método Doble Ciego , Inyecciones Intramusculares , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Virus Sincitiales Respiratorios , Resultado del Tratamiento , Vacunación/efectos adversos , Vacunación/métodos , Eficacia de las Vacunas , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/uso terapéutico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & controlRESUMEN
In March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1, a pandemic. With rapidly accumulating numbers of cases and deaths reported globally2, a vaccine is urgently needed. Here we report the available safety, tolerability and immunogenicity data from an ongoing placebo-controlled, observer-blinded dose-escalation study (ClinicalTrials.gov identifier NCT04368728) among 45 healthy adults (18-55 years of age), who were randomized to receive 2 doses-separated by 21 days-of 10 µg, 30 µg or 100 µg of BNT162b1. BNT162b1 is a lipid-nanoparticle-formulated, nucleoside-modified mRNA vaccine that encodes the trimerized receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2. Local reactions and systemic events were dose-dependent, generally mild to moderate, and transient. A second vaccination with 100 µg was not administered because of the increased reactogenicity and a lack of meaningfully increased immunogenicity after a single dose compared with the 30-µg dose. RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second dose. Geometric mean neutralizing titres reached 1.9-4.6-fold that of a panel of COVID-19 convalescent human sera, which were obtained at least 14 days after a positive SARS-CoV-2 PCR. These results support further evaluation of this mRNA vaccine candidate.
Asunto(s)
Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Vacunas Virales/genética , Adulto Joven , Sueroterapia para COVID-19RESUMEN
Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.
Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/tendencias , Cooperación Internacional , Animales , Biodiversidad , Conservación de los Recursos Naturales/economía , Análisis Costo-Beneficio , Restauración y Remediación Ambiental/economía , Mapeo Geográfico , Calentamiento Global/economía , Calentamiento Global/prevención & controlRESUMEN
An effective vaccine is needed to halt the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase I/II coronavirus disease 2019 (COVID-19) vaccine trial with BNT162b1, a lipid nanoparticle-formulated nucleoside-modified mRNA that encodes the receptor binding domain (RBD) of the SARS-CoV-2 spike protein1. Here we present antibody and T cell responses after vaccination with BNT162b1 from a second, non-randomized open-label phase I/II trial in healthy adults, 18-55 years of age. Two doses of 1-50 µg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those seen in serum from a cohort of individuals who had recovered from COVID-19. Geometric mean titres of SARS-CoV-2 serum-neutralizing antibodies on day 43 were 0.7-fold (1-µg dose) to 3.5-fold (50-µg dose) those of the recovered individuals. Immune sera broadly neutralized pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had T helper type 1 (TH1)-skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon-γ was produced by a large fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest that it has the potential to protect against COVID-19 through multiple beneficial mechanisms.
Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Células TH1/inmunología , Vacunas Virales/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Citocinas/inmunología , Femenino , Alemania , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pandemias , Células TH1/citología , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto JovenRESUMEN
Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.
Asunto(s)
Sistema Nervioso Central , ARN Interferente Pequeño , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Apolipoproteínas E/genética , Sistema Nervioso Central/metabolismo , Silenciador del Gen , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/químicaRESUMEN
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Asunto(s)
Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Animales , Ratones , Distribución Tisular , ARN/genética , OligonucleótidosRESUMEN
Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.
Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Humanos , Intrones , Mutación , GenomaRESUMEN
The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.
Asunto(s)
COVID-19 , Humanos , Animales , Ratones , ARN Interferente Pequeño/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Oligonucleótidos , PulmónRESUMEN
Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.
Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/genética , Evolución Molecular , Primates/genética , EncéfaloRESUMEN
Polyadenylation is an essential process for the stabilization and export of mRNAs to the cytoplasm and the polyadenylation signal hexamer (herein referred to as hexamer) plays a key role in this process. Yet, only 14 Mendelian disorders have been associated with hexamer variants. This is likely an under-ascertainment as hexamers are not well defined and not routinely examined in molecular analysis. To facilitate the interrogation of putatively pathogenic hexamer variants, we set out to define functionally important hexamers genome-wide as a resource for research and clinical testing interrogation. We identified predominant polyA sites (herein referred to as pPAS) and putative predominant hexamers across protein coding genes (PAS usage >50% per gene). As a measure of the validity of these sites, the population constraint of 4532 predominant hexamers were measured. The predominant hexamers had fewer observed variants compared to non-predominant hexamers and trimer controls, and CADD scores for variants in these hexamers were significantly higher than controls. Exome data for 1477 individuals were interrogated for hexamer variants and transcriptome data were generated for 76 individuals with 65 variants in predominant hexamers. 3' RNA-seq data showed these variants resulted in alternate polyadenylation events (38%) and in elongated mRNA transcripts (12%). Our list of pPAS and predominant hexamers are available in the UCSC genome browser and on GitHub. We suggest this list of predominant hexamers can be used to interrogate exome and genome data. Variants in these predominant hexamers should be considered candidates for pathogenic variation in human disease, and to that end we suggest pathogenicity criteria for classifying hexamer variants.
Asunto(s)
Genoma , Poliadenilación , Humanos , Poliadenilación/genéticaRESUMEN
We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.
Asunto(s)
Genoma Humano , Mutación Missense , Análisis por Conglomerados , Exoma/genética , Genoma Humano/genética , Humanos , Mutación Missense/genética , VirulenciaRESUMEN
Thyrotoxicosis causes a variety of symptoms and adverse health outcomes. Hyperthyroidism refers to increased thyroid hormone synthesis and secretion, most commonly from Graves' disease or toxic nodular goitre, whereas thyroiditis (typically autoimmune, viral, or drug induced) causes thyrotoxicosis without hyperthyroidism. The diagnosis is based on suppressed serum concentrations of thyroid-stimulating hormone (TSH), accompanied by free thyroxine and total or free tri-iodothyronine concentrations, which are raised (overt hyperthyroidism) or within range (subclinical hyperthyroidism). The underlying cause is determined by clinical assessment, detection of TSH-receptor antibodies and, if necessary, radionuclide thyroid scintigraphy. Treatment options for hyperthyroidism include antithyroid drugs, radioactive iodine, and thyroidectomy, whereas thyroiditis is managed symptomatically or with glucocorticoid therapy. In Graves' disease, first-line treatment is a 12-18-month course of antithyroid drugs, whereas for goitre, radioactive iodine or surgery are preferred for toxic nodules or goitres. Evidence also supports long-term treatment with antithyroid drugs as an option for patients with Graves' disease and toxic nodular goitre.