Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056679

RESUMEN

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Munc18/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica , Animales , Estimulación Eléctrica , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Embarazo , Ratas Wistar , Estrés Psicológico/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(18): 5095-100, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091977

RESUMEN

Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.


Asunto(s)
Potenciales de Acción/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Proteína Quinasa C/metabolismo , Sinaptotagmina I/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/fisiología
3.
Elife ; 92020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831174

RESUMEN

Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.


Asunto(s)
Plasticidad Neuronal/fisiología , Vesículas Sinápticas , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Fusión de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo
4.
Elife ; 4: e05531, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25871846

RESUMEN

The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.


Asunto(s)
Calcio/metabolismo , Fusión de Membrana/efectos de los fármacos , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Expresión Génica , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Cinética , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Concentración Osmolar , Técnicas de Placa-Clamp , Ésteres del Forbol/farmacología , Cultivo Primario de Células , Sacarosa/farmacología , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA