Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7739): 372-376, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626964

RESUMEN

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Asunto(s)
Actinas/química , Actinas/metabolismo , Distocia/enzimología , Distocia/prevención & control , Histidina/química , Histidina/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Femenino , Histona Metiltransferasas , Histonas , Tamaño de la Camada/genética , Masculino , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Modelos Moleculares , Músculo Liso/citología , Músculo Liso/fisiología , Embarazo , Proteómica , Contracción Uterina , Útero/citología , Útero/fisiología
2.
Am J Med Genet A ; 191(6): 1492-1501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36883293

RESUMEN

Although decreased citrulline is used as a newborn screening (NBS) marker to identify proximal urea cycle disorders (UCDs), it is also a feature of some mitochondrial diseases, including MT-ATP6 mitochondrial disease. Here we describe biochemical and clinical features of 11 children born to eight mothers from seven separate families who were identified with low citrulline by NBS (range 3-5 µM; screening cutoff >5) and ultimately diagnosed with MT-ATP6 mitochondrial disease. Follow-up testing revealed a pattern of hypocitrullinemia together with elevated propionyl-(C3) and 3-hydroxyisovaleryl-(C5-OH) acylcarnitines, and a homoplasmic pathogenic variant in MT-ATP6 in all cases. Single and multivariate analysis of NBS data from the 11 cases using Collaborative Laboratory Integrated Reports (CLIR; https://clir.mayo.edu) demonstrated citrulline <1st percentile, C3 > 50th percentile, and C5-OH >90th percentile when compared with reference data, as well as unequivocal separation from proximal UCD cases and false-positive low citrulline cases using dual scatter plots. Five of the eight mothers were symptomatic at the time of their child(ren)'s diagnosis, and all mothers and maternal grandmothers evaluated molecularly and biochemically had a homoplasmic pathogenic variant in MT-ATP6, low citrulline, elevated C3, and/or elevated C5-OH. All molecularly confirmed individuals (n = 17) with either no symptoms (n = 12), migraines (n = 1), or a neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) phenotype (n = 3) were found to have an A or U mitochondrial haplogroup, while one child with infantile-lethal Leigh syndrome had a B haplogroup.


Asunto(s)
Enfermedades Mitocondriales , ATPasas de Translocación de Protón Mitocondriales , Tamizaje Neonatal , Humanos , Recién Nacido , ATPasas de Translocación de Protón Mitocondriales/genética , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Citrulina/sangre , Linaje , Trastornos Innatos del Ciclo de la Urea/diagnóstico
3.
J Inherit Metab Dis ; 46(2): 194-205, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680545

RESUMEN

Improved second-tier assays are needed to reduce the number of false positives in newborn screening (NBS) for inherited metabolic disorders including those on the Recommended Uniform Screening Panel (RUSP). We developed an expanded metabolite panel for second-tier testing of dried blood spot (DBS) samples from screen-positive cases reported by the California NBS program, consisting of true- and false-positives from four disorders: glutaric acidemia type I (GA1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). This panel was assembled from known disease markers and new features discovered by untargeted metabolomics and applied to second-tier analysis of single DBS punches using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a 3-min run. Additionally, we trained a Random Forest (RF) machine learning classifier to improve separation of true- and false positive cases. Targeted metabolomic analysis of 121 analytes from DBS extracts in combination with RF classification at a sensitivity of 100% reduced false positives for GA1 by 83%, MMA by 84%, OTCD by 100%, and VLCADD by 51%. This performance was driven by a combination of known disease markers (3-hydroxyglutaric acid, methylmalonic acid, citrulline, and C14:1), other amino acids and acylcarnitines, and novel metabolites identified to be isobaric to several long-chain acylcarnitine and hydroxy-acylcarnitine species. These findings establish the effectiveness of this second-tier test to improve screening for these four conditions and demonstrate the utility of supervised machine learning in reducing false-positives for conditions lacking clearly discriminating markers, with future studies aimed at optimizing and expanding the panel to additional disease targets.


Asunto(s)
Tamizaje Neonatal , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem
4.
Nature ; 551(7682): 648-652, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29168502

RESUMEN

The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Closterium/metabolismo , Microbioma Gastrointestinal/fisiología , Redes y Vías Metabólicas , Metaboloma/fisiología , Suero/química , Suero/metabolismo , Aminoácidos Aromáticos/sangre , Animales , Análisis Químico de la Sangre , Closterium/genética , Microbioma Gastrointestinal/genética , Vida Libre de Gérmenes , Humanos , Inmunidad , Indoles/sangre , Indoles/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Redes y Vías Metabólicas/genética , Metabolómica , Ratones , Familia de Multigenes/genética , Permeabilidad , Fenilalanina/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
5.
PLoS Genet ; 16(12): e1009258, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315951

RESUMEN

Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Drosophila/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Ratones , Factor 1 Relacionado con NF-E2/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proteínas Quinasas/genética , Transducción de Señal
6.
Mol Genet Metab ; 137(3): 292-300, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252453

RESUMEN

DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS) program. NBS data includes 41 blood metabolites measured by tandem mass spectrometry from singleton babies in 17 parent-reported ethnicity groupings. Ethnicity-associated differences identified for 71% of NBS metabolites (29 of 41, Cohen's d > 0.5) showed larger differences in blood levels of acylcarnitines than of amino acids (P < 1e-4). A metabolic distance measure, developed to compare ethnic groupings based on metabolic differences, showed low positive correlation with genetic and ancient geographic distances between the groups' ancestral world populations. Several outlier group pairs were identified with larger genetic and smaller metabolic distances (Black versus White) or with smaller genetic and larger metabolic distances (Chinese versus Japanese) indicating the influence of genetic and of environmental factors on metabolism. Using machine learning, comparison of metabolic profiles between all pairs of ethnic groupings distinguished individuals with larger genetic distance (Black versus Chinese, AUC = 0.96), while genetically more similar individuals could not be separated metabolically (Hispanic versus Native American, AUC = 0.51). Additionally, we identified metabolites informative for inferring metabolic ancestry in individuals from genetically similar populations, which included biomarkers for inborn metabolic disorders (C10:1, C12:1, C3, C5OH, Leucine-Isoleucine). This work sheds new light on metabolic differences in healthy newborns in diverse populations, which could have implications for improving genetic disease screening.


Asunto(s)
Errores Innatos del Metabolismo , Humanos , Recién Nacido , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética , Tamizaje Neonatal/métodos , Espectrometría de Masas en Tándem/métodos , Aminoácidos/genética , Biomarcadores
7.
Am J Med Genet A ; 188(2): 473-487, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34668327

RESUMEN

Biallelic pathogenic variants in the TANGO2 (transport and Golgi organization 2 homolog) gene have been identified as causing a rare metabolic disorder characterized by susceptibility to recurrent rhabdomyolysis, lactic acidosis, encephalopathy, and life-threatening tachyarrhythmias. Recently published reports suggest variable clinical severity and phenotypes. This study details five new patients from two families with biallelic pathogenic variants in the TANGO2 gene identified by whole exome sequencing and includes the largest number of affected individuals from a single family reported to date. We document significant intrafamilial variability and highlight that milder phenotypes may be underrecognized. We present biochemical and clinical data to help highlight the features that aid in consideration of this condition in the differential with disorders of fatty acid oxidation. We also present a comprehensive literature review summarizing the molecular, clinical, and biochemical findings for 92 individuals across 13 publications. Of the 27 pathogenic variants reported to date, the recurrent exons 3-9 deletion represents the most common variant seen in 42% of individuals with TANGO2 deficiency. Common clinical features seen in >70% of all individuals include acute metabolic crisis, rhabdomyolysis, neurologic abnormalities, developmental delay, and intellectual disability. Findings such as elevated creatine kinase, hypothyroidism, ketotic hypoglycemia, QT prolongation, or abnormalities of long-chain acylcarnitines and urine dicarboxylic acids should raise clinical suspicion for this life-threatening condition.


Asunto(s)
Discapacidad Intelectual , Rabdomiólisis , Exones , Humanos , Discapacidad Intelectual/genética , Fenotipo , Rabdomiólisis/diagnóstico , Rabdomiólisis/genética , Secuenciación del Exoma
8.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478781

RESUMEN

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.


Asunto(s)
Alelos , Enfermedades Metabólicas/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química
9.
Mol Genet Metab ; 134(1-2): 43-52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34474962

RESUMEN

BACKGROUND: Urine and plasma biomarker testing for lysosomal storage disorders by liquid chromatography mass spectrometry (LC-MS) currently requires multiple analytical methods to detect the abnormal accumulation of oligosaccharides, mucopolysaccharides, and glycolipids. To improve clinical testing efficiency, we developed a single LC-MS method to simultaneously identify disorders of oligosaccharide, mucopolysaccharide, and glycolipid metabolism with minimal sample preparation. METHODS: We created a single chromatographic method for separating free glycans and glycolipids in their native form, using an amide column and high pH conditions. We used this glycomic profiling method both in untargeted analyses of patient and control urines using LC ion-mobility high-resolution MS (biomarker discovery), and targeted analyses of urine, serum, and dried blood spot samples by LC-MS/MS (clinical validation). RESULTS: Untargeted glycomic profiling revealed twenty biomarkers that could identify and subtype mucopolysaccharidoses. We incorporated these with known oligosaccharide and glycolipid biomarkers into a rapid test that identifies at least 27 lysosomal storage disorders, including oligosaccharidoses, mucopolysaccharidoses, sphingolipidoses, glycogen storage disorders, and congenital disorders of glycosylation and de-glycosylation. In a validation set containing 115 urine samples from patients with lysosomal storage disorders, all were unambiguously distinguished from normal controls, with correct disease subtyping for 88% (101/115) of cases. Glucosylsphingosine was reliably elevated in dried blood spots from Gaucher disease patients with baseline resolution from galactosylsphingosine. CONCLUSION: Glycomic profiling by liquid chromatography mass spectrometry identifies a range of lysosomal storage disorders. This test can be used in clinical evaluations to rapidly focus a diagnosis, as well as to clarify or support additional gene sequencing and enzyme studies.


Asunto(s)
Cromatografía Liquida/métodos , Glicómica/métodos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Espectrometría de Masas en Tándem/métodos , Biomarcadores/sangre , Biomarcadores/orina , Preescolar , Pruebas con Sangre Seca , Humanos , Lactante , Recién Nacido , Enfermedades por Almacenamiento Lisosomal/sangre , Enfermedades por Almacenamiento Lisosomal/orina , Metabolómica/métodos
10.
J Inherit Metab Dis ; 43(5): 934-943, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32216101

RESUMEN

Newborn screening (NBS) programmes utilise information on a variety of clinical variables such as gestational age, sex, and birth weight to reduce false-positive screens for inborn metabolic disorders. Here we study the influence of ethnicity on metabolic marker levels in a diverse newborn population. NBS data from screen-negative singleton babies (n = 100 000) were analysed, which included blood metabolic markers measured by tandem mass spectrometry and ethnicity status reported by the parents. Metabolic marker levels were compared between major ethnic groups (Asian, Black, Hispanic, White) using effect size analysis, which controlled for group size differences and influence from clinical variables. Marker level differences found between ethnic groups were correlated to NBS data from 2532 false-positive cases for four metabolic diseases: glutaric acidemia type 1 (GA-1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). In the result, 79% of the metabolic markers (34 of 43) had ethnicity-related differences. Compared to the other groups, Black infants had elevated GA-1 markers (C5DC, Cohen's d = .37, P < .001), Hispanics had elevated MMA markers (C3, Cohen's d = .13, P < .001, and C3/C2, Cohen's d = .27, P < .001); and Whites had elevated VLCADD markers (C14, Cohen's d = .28, P < .001, and C14:1, Cohen's d = .22, P < .001) and decreased OTCD markers (citrulline, Cohen's d = -.26, P < .001). These findings correlated with the higher false-positive rates in Black infants for GA-1, in Hispanics for MMA, and in Whites for OTCD and for VLCADD. Web-based tools are available to analyse ethnicity-related changes in newborn metabolism and to support developing methods to identify false-positives in metabolic screening.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Etnicidad/estadística & datos numéricos , Errores Innatos del Metabolismo Lipídico/diagnóstico , Enfermedades Mitocondriales/diagnóstico , Enfermedades Musculares/diagnóstico , Tamizaje Neonatal/métodos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Acil-CoA Deshidrogenasa de Cadena Larga/sangre , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Biomarcadores/sangre , Encefalopatías Metabólicas/sangre , California , Síndromes Congénitos de Insuficiencia de la Médula Ósea/sangre , Reacciones Falso Positivas , Femenino , Edad Gestacional , Glutaril-CoA Deshidrogenasa/sangre , Glutaril-CoA Deshidrogenasa/deficiencia , Humanos , Recién Nacido , Errores Innatos del Metabolismo Lipídico/sangre , Masculino , Enfermedades Mitocondriales/sangre , Enfermedades Musculares/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/sangre , Espectrometría de Masas en Tándem
11.
Genet Med ; 21(4): 896-903, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30209273

RESUMEN

PURPOSE: Improved second-tier tools are needed to reduce false-positive outcomes in newborn screening (NBS) for inborn metabolic disorders on the Recommended Universal Screening Panel (RUSP). METHODS: We designed an assay for multiplex sequencing of 72 metabolic genes (RUSPseq) from newborn dried blood spots. Analytical and clinical performance was evaluated in 60 screen-positive newborns for methylmalonic acidemia (MMA) reported by the California Department of Public Health NBS program. Additionally, we trained a Random Forest machine learning classifier on NBS data to improve prediction of true and false-positive MMA cases. RESULTS: Of 28 MMA patients sequenced, we found two pathogenic or likely pathogenic (P/LP) variants in a MMA-related gene in 24 patients, and one pathogenic variant and a variant of unknown significance (VUS) in 1 patient. No such variant combinations were detected in MMA false positives and healthy controls. Random Forest-based analysis of the entire NBS metabolic profile correctly identified the MMA patients and reduced MMA false-positive cases by 51%. MMA screen-positive newborns were more likely of Hispanic ethnicity. CONCLUSION: Our two-pronged approach reduced false positives by half and provided a reportable molecular finding for 89% of MMA patients. Challenges remain in newborn metabolic screening and DNA variant interpretation in diverse multiethnic populations.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/sangre , Variación Genética , Errores Innatos del Metabolismo/sangre , Tamizaje Neonatal , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Pruebas con Sangre Seca , Femenino , Humanos , Recién Nacido , Aprendizaje Automático , Masculino , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/patología
12.
Mol Genet Metab ; 126(1): 39-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448007

RESUMEN

Analysis of California newborn screening (NBS) data revealed a high prevalence of Hispanic infants testing positive for methylmalonic acidemia (MMA), a trend seen for both true- and false-positive cases. Here we show that Hispanic infants have significantly higher levels of MMA screening markers than non-Hispanics. Preterm birth and increased birth weight were found to be associated with elevated MMA marker levels but could not entirely explain these differences. While the preterm birth rate was higher in Blacks than Hispanics, Black infants had on average the lowest MMA marker levels. Preterm birth was associated with lower birth weight and increased MMA marker levels suggesting that gestational age is the stronger predictive covariate compared to birth weight. These findings could help explain why MMA false-positive results are more likely in Hispanic than in Black infants, which could inform screening and diagnostic procedures for MMA and potentially other disorders in newborns.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/etnología , Hispánicos o Latinos , Nacimiento Prematuro/etnología , Negro o Afroamericano/estadística & datos numéricos , Biomarcadores/sangre , Peso al Nacer , California/epidemiología , Reacciones Falso Positivas , Femenino , Edad Gestacional , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Recién Nacido , Masculino , Ácido Metilmalónico/sangre , Tamizaje Neonatal , Salud Pública
13.
J Inherit Metab Dis ; 42(3): 424-437, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30873612

RESUMEN

STUDY OBJECTIVE: A phase 1/2 clinical trial was performed in individuals with cystathionine ß synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS: Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 µM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS: Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 µM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 µM, pertinent to endothelial function. CONCLUSION: Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.


Asunto(s)
Biomarcadores/metabolismo , Cistationina betasintasa/metabolismo , Homocistinuria/tratamiento farmacológico , Taurina/farmacocinética , Taurina/uso terapéutico , Adolescente , Adulto , Arteria Braquial/efectos de los fármacos , Niño , Cistationina betasintasa/deficiencia , Femenino , Homocisteína/metabolismo , Homocistinuria/genética , Humanos , Inflamación/tratamiento farmacológico , Masculino , Estrés Oxidativo/efectos de los fármacos , Estados Unidos , Adulto Joven
15.
Genet Med ; 20(1): 83-90, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28661487

RESUMEN

PurposeTesting for inborn errors of metabolism is performed by clinical laboratories worldwide, each utilizing laboratory-developed procedures. We sought to summarize performance in the College of American Pathologists' (CAP) proficiency testing (PT) program and identify opportunities for improving laboratory quality. When evaluating PT data, we focused on a subset of laboratories that have participated in at least one survey since 2010.MethodsAn analysis of laboratory performance (2004 to 2014) on the Biochemical Genetics PT Surveys, a program administered by CAP and the American College of Medical Genetics and Genomics. Analytical and interpretive performance was evaluated for four tests: amino acids, organic acids, acylcarnitines, and mucopolysaccharides.ResultsSince 2010, 150 laboratories have participated in at least one of four PT surveys. Analytic sensitivities ranged from 88.2 to 93.4%, while clinical sensitivities ranged from 82.4 to 91.0%. Performance was higher for US participants and for more recent challenges. Performance was lower for challenges with subtle findings or complex analytical patterns.ConclusionUS clinical biochemical genetics laboratory proficiency is satisfactory, with a minority of laboratories accounting for the majority of errors. Our findings underscore the complex nature of clinical biochemical genetics testing and highlight the necessity of continuous quality management.


Asunto(s)
Pruebas Genéticas/normas , Laboratorios/normas , Ensayos de Aptitud de Laboratorios/métodos , Ensayos de Aptitud de Laboratorios/normas , Pruebas Genéticas/métodos , Genética Médica/métodos , Genética Médica/normas , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Mol Genet Metab ; 123(3): 297-300, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29396029

RESUMEN

PURPOSE OF STUDY: Patients with neonatal urea cycle defects (UCDs) typically experience severe hyperammonemia during the first days of life, which results in serious neurological injury or death. Long-term prognosis despite optimal pharmacological and dietary therapy is still poor. The combination of intravenous sodium phenylacetate and sodium benzoate (Ammonul®) can eliminate nitrogen waste independent of the urea cycle. We report attempts to improve outcomes for males with severe ornithine transcarbamylase deficiency (OTCD), a severe X-linked condition, via prenatal intravenous administration of Ammonul and arginine to heterozygous carrier females of OTCD during labor. METHODS USED: Two heterozygote OTCD mothers carrying male fetuses with a prenatal diagnosis of OTCD received intravenous Ammonul, arginine and dextrose-containing fluids shortly before birth. Maintenance Ammonul and arginine infusions and high-caloric enteral nutrition were started immediately after birth. Ammonul metabolites were measured in umbilical cord blood and the blood of the newborn immediately after delivery. Serial ammonia and biochemical analyses were performed following delivery. SUMMARY OF RESULTS: Therapeutic concentrations of Ammonul metabolites were detected in umbilical cord and neonatal blood samples. Plasma ammonia and glutamine levels in the postnatal period were within the normal range. Peak ammonia levels in the first 24-48h were 53mcmol/l and 62mcmol/l respectively. The boys did not experience neurological sequelae secondary to hyperammonemia and received liver transplantation at ages 3months and 5months. The patients show normal development at ages 7 and 3years. CONCLUSION: Prenatal treatment of mothers who harbor severe OTCD mutations and carry affected male fetuses with intravenous Ammonul and arginine, followed by immediate institution of maintenance infusions after delivery, results in therapeutic levels of benzoate and phenylacetate in the newborn at delivery and, in conjunction with high-caloric enteral nutrition, prevents acute hyperammonemia and neurological decompensation. Following initial medical management, early liver transplantation may improve developmental outcome.


Asunto(s)
Hiperamonemia/tratamiento farmacológico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/tratamiento farmacológico , Fenilacetatos/uso terapéutico , Atención Prenatal/métodos , Benzoato de Sodio/uso terapéutico , Amoníaco/sangre , Amoníaco/toxicidad , Combinación de Medicamentos , Femenino , Glutamina/sangre , Humanos , Hiperamonemia/sangre , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Recién Nacido , Masculino , Mutación , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Embarazo , Diagnóstico Prenatal , Resultado del Tratamiento , Urea/metabolismo
17.
Genet Med ; 19(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28682309

RESUMEN

Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these Standards and Guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory scientists and geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Biotinidase deficiency is an autosomal recessively inherited disorder of biotin recycling that is associated with neurologic and cutaneous consequences if untreated. Fortunately, the clinical features of the disorder can be ameliorated or prevented by administering pharmacological doses of the vitamin biotin. Newborn screening and confirmatory diagnosis of biotinidase deficiency encompasses both enzymatic and molecular testing approaches. These guidelines were developed to define and standardize laboratory procedures for enzymatic biotinidase testing, to delineate situations for which follow-up molecular testing is warranted, and to characterize variables that can influence test performance and interpretation of results.


Asunto(s)
Deficiencia de Biotinidasa/diagnóstico , Pruebas Genéticas/normas , Biotinidasa/metabolismo , Técnicas de Laboratorio Clínico , Femenino , Genética Médica/métodos , Genómica/normas , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal , Estados Unidos
18.
Mol Genet Metab ; 122(4): 156-159, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29032949

RESUMEN

PURPOSE: Maple Syrup Urine Disease (MSUD) is a rare disorder of branched-chain amino acid catabolism associated with encephalopathy from accumulation of leucine. Leucine is closely monitored during normal growth and particularly during acute illness. As most hospitals do not have access to rapid plasma amino acid quantification, the initial management is often empirical. A model describing the reduction of plasma leucine in hyperleucinemic patients on leucine-free formula would help to guide management and optimize testing frequency. METHODS: We retrospectively reviewed charts from 15 MSUD patients comprising 29 episodes of hyperleucinemia that were managed with leucine-free formula. Episodes were categorized by clinical presentation. RESULTS: Upon leucine restriction, plasma leucine concentrations fell exponentially at a rate proportional to approximately 50% of the starting value over each 24-hour period. Recovery appears to be sensitive to clinical status and triggering event of the hyperleucinemic episode. Patients with upper respiratory infections generally recovered slowly, while cases of dietary non-adherence resolved more quickly. CONCLUSION: This general model may help anticipate leucine levels during clinical management of MSUD patients when using nutritional support and leucine-free formula. The response of individual patients may vary depending on clinical status and triggering factors.


Asunto(s)
Dieta , Leucina/sangre , Leucina/metabolismo , Enfermedad de la Orina de Jarabe de Arce/dietoterapia , Acidosis/complicaciones , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedad de la Orina de Jarabe de Arce/sangre , Estudios Retrospectivos , Resultado del Tratamiento
19.
J Pediatr ; 181: 80-85.e1, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27836286

RESUMEN

OBJECTIVE: To evaluate the association between newborn acylcarnitine profiles and the subsequent development of necrotizing enterocolitis (NEC) with the use of routinely collected newborn screening data in infants born preterm. STUDY DESIGN: A retrospective cohort study was conducted with the use of discharge records for infants born preterm admitted to neonatal intensive care units in California from 2005 to 2009 who had linked state newborn screening results. A model-development cohort of 94 110 preterm births from 2005 to 2008 was used to develop a risk-stratification model that was then applied to a validation cohort of 22 992 births from 2009. RESULTS: Fourteen acylcarnitine levels and acylcarnitine ratios were associated with increased risk of developing NEC. Each log unit increase in C5 and free carnitine /(C16 + 18:1) was associated with a 78% and a 76% increased risk for developing NEC, respectively (OR 1.78, 95% CI 1.53-2.02, and OR 1.76, 95% CI 1.51-2.06). Six acylcarnitine levels, along with birth weight and total parenteral nutrition, identified 89.8% of newborns with NEC in the model-development cohort (area under the curve 0.898, 95% CI 0.889-0.907) and 90.8% of the newborns with NEC in the validation cohort (area under the curve 0.908, 95% CI 0.901-0.930). CONCLUSIONS: Abnormal fatty acid metabolism was associated with prematurity and the development of NEC. Metabolic profiling through newborn screening may serve as an objective biologic surrogate of risk for the development of disease and thus facilitate disease-prevention strategies.


Asunto(s)
Carnitina/análogos & derivados , Enterocolitis Necrotizante/diagnóstico , Enterocolitis Necrotizante/metabolismo , Recien Nacido Prematuro , Biomarcadores/análisis , California , Carnitina/análisis , Carnitina/sangre , Estudios de Cohortes , Intervalos de Confianza , Enterocolitis Necrotizante/epidemiología , Femenino , Estudios de Seguimiento , Edad Gestacional , Humanos , Incidencia , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Análisis Multivariante , Tamizaje Neonatal/métodos , Oportunidad Relativa , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Poblaciones Vulnerables
20.
J Inherit Metab Dis ; 39(6): 821-829, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27488560

RESUMEN

Hawkinsinuria is a rare disorder of tyrosine metabolism that can manifest with metabolic acidosis and growth arrest around the time of weaning off breast milk, typically followed by spontaneous resolution of symptoms around 1 year of age. The urinary metabolites hawkinsin, quinolacetic acid, and pyroglutamic acid can aid in identifying this condition, although their relationship to the clinical manifestations is not known. Herein we describe clinical and laboratory findings in two fraternal twins with hawkinsinuria who presented with failure to thrive and metabolic acidosis. Close clinical follow-up and laboratory testing revealed previously unrecognized hypoglycemia, hypophosphatemia, combined hyperlipidemia, and anemia, along with the characteristic urinary metabolites, including massive pyroglutamic aciduria. Treatment with N-acetyl-L-cysteine (NAC) restored normal growth and normalized or improved most biochemical parameters. The dramatic response to NAC therapy supports the idea that glutathione depletion plays a key role in the pathogenesis of hawkinsinuria.


Asunto(s)
Acetilcisteína/uso terapéutico , Oxigenasas de Función Mixta/deficiencia , Tirosinemias/tratamiento farmacológico , Acidosis/patología , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/patología , Femenino , Glutatión Sintasa/deficiencia , Humanos , Recién Nacido , Masculino , Fenotipo , Gemelos , Tirosinemias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA