Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29987152

RESUMEN

Cryptococcal meningitis is a significant cause of morbidity and mortality in immunocompromised patients. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. Our objective was to evaluate the in vivo efficacy of VT-1129 against cryptococcal meningitis. Mice were inoculated intracranially with Cryptococcus neoformans Oral treatment with VT-1129, fluconazole, or placebo began 1 day later and continued for either 7 or 14 days, and brains and plasma were collected on day 8 or 15, 1 day after therapy ended, and the fungal burden was assessed. In the survival study, treatment continued until day 10 or day 28, after which mice were monitored off therapy until day 30 or day 60, respectively, to assess survival. The fungal burden was also assessed in the survival arm. VT-1129 plasma and brain concentrations were also measured. VT-1129 reached a significant maximal survival benefit (100%) at a dose of 20 mg/kg of body weight once daily. VT-1129 at doses of ≥0.3 mg/kg/day and each dose of fluconazole significantly reduced the brain tissue fungal burden compared to that in the control after both 7 and 14 days of dosing. The fungal burden was also undetectable in most mice treated with a dose of ≥3 mg/kg/day, even ≥20 days after dosing had stopped, in the survival arm. In contrast, rebounds in fungal burden were observed with fluconazole. These results are consistent with the VT-1129 concentrations, which remained elevated long after dosing had stopped. These data demonstrate the potential utility of VT-1129 to have a marked impact in the treatment of cryptococcal meningitis.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Cryptococcus neoformans/efectos de los fármacos , Meningitis Criptocócica/tratamiento farmacológico , Piridinas/farmacología , Esterol 14-Desmetilasa/metabolismo , Tetrazoles/farmacología , Animales , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Fluconazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Modelos Teóricos
2.
Artículo en Inglés | MEDLINE | ID: mdl-30104280

RESUMEN

VT-1129 is a novel fungal enzyme-specific Cyp51 inhibitor with potent cryptococcal activity. Because of its long half-life (>6 days in mice) and our desire to quickly reach potent efficacy, we evaluated a VT-1129 loading dose-maintenance dose strategy against cryptococcal meningitis. VT-1129 plasma and brain pharmacokinetics were first studied in healthy mice, and these data were used to model loading dose-maintenance dose regimens to generate different steady-state concentrations. Mice were inoculated intracranially with Cryptococcus neoformans, and oral treatment began 1 day later. Treatment consisted of placebo or one of three VT-1129 loading dose-maintenance dose regimens, i.e., loading dose of 1, 3, or 30 mg/kg on day 1, followed by once-daily maintenance doses of 0.15, 0.5, or 5 mg/kg, respectively. In the fungal burden arm, therapy continued for 14 days and brains were collected on day 15 for fungal burden assessments. In the survival arm, treatment continued for 10 days, after which mice were monitored without therapy until day 30. VT-1129 plasma and brain concentrations were also measured. All VT-1129 doses significantly improved survival and reduced fungal burdens, compared to placebo. VT-1129 plasma and brain levels correlated with fungal burden reductions (R2 = 0.72 and R2 = 0.67, respectively), with a plasma concentration of 1 µg/ml yielding a reduction of ∼5 log10 CFU/g. With the highest loading dose-maintenance dose regimen, fungal burdens were undetectable in one-half of the mice in the fungal burden arm and in one-fourth of the mice in the survival arm, 20 days after the final dose. These data support a loading dose-maintenance dose strategy for quickly reaching highly efficacious VT-1129 concentrations for treating cryptococcal meningitis.


Asunto(s)
Antifúngicos/farmacología , Meningitis Criptocócica/tratamiento farmacológico , Piridinas/farmacología , Tetrazoles/farmacología , Animales , Encéfalo/microbiología , Cryptococcus neoformans/efectos de los fármacos , Masculino , Meningitis Criptocócica/microbiología , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana/métodos
3.
J Bone Miner Res ; 31(5): 975-84, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26678919

RESUMEN

Hypoparathyroidism (HP) arises most commonly from parathyroid (PT) gland damage associated with neck surgery, and is typically treated with oral calcium and active vitamin D. Such treatment effectively increases levels of serum calcium (sCa), but also brings risk of hypercalciuria and renal damage. There is thus considerable interest in using PTH or PTH analogs to treat HP. To facilitate study of this disease and the assessment of new treatment options, we developed two mouse models of acquired HP, and used them to assess efficacy of PTH(1-34) as well as a long-acting PTH analog (LA-PTH) in regulating blood calcium levels. In one model, we used PTHcre-iDTR mice in which the diphtheria toxin (DT) receptor (DTR) is selectively expressed in PT glands, such that systemic DT administration selectively ablates parathyroid cells. For the second model, we generated GFP-PT mice in which green fluorescent protein (GFP) is selectively expressed in PT cells, such that parathyroidectomy (PTX) is facilitated by green fluorescence of the PT glands. In the PTHcre-iDTR mice, DT injection (2 × 5 µg/kg, i.p.) resulted in moderate yet consistent reductions in serum PTH and sCa levels. The more severe hypoparathyroid phenotype was observed in GFP-PT mice following GFP-guided PTX surgery. In each model, a single subcutaneous injection of LA-PTH increased sCa levels more effectively and for a longer duration (>24 hours) than did a 10-fold higher dose of PTH(1-34), without causing excessive urinary calcium excretion. These new mouse models thus faithfully replicate two degrees of acquired HP, moderate and severe, and may be useful for assessing potential new modes of therapy. © 2015 American Society for Bone and Mineral Research.


Asunto(s)
Toxina Diftérica/toxicidad , Hipoparatiroidismo/tratamiento farmacológico , Hormona Paratiroidea , Animales , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipoparatiroidismo/inducido químicamente , Hipoparatiroidismo/genética , Hipoparatiroidismo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Hormona Paratiroidea/análogos & derivados , Hormona Paratiroidea/farmacología
4.
Curr Top Med Chem ; 14(3): 330-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24283970

RESUMEN

In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-ß-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-ß-CD for the benefit of the NPC patient community.


Asunto(s)
Conducta Cooperativa , Descubrimiento de Drogas/organización & administración , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , beta-Ciclodextrinas/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina , Descubrimiento de Drogas/economía , Humanos , National Institutes of Health (U.S.)/organización & administración , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Raras/tratamiento farmacológico , Estados Unidos , beta-Ciclodextrinas/síntesis química , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA