Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 51(5): 1268-1286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366197

RESUMEN

The numbers of diagnostic and therapeutic nuclear medicine agents under investigation are rapidly increasing. Both novel emitters and novel carrier molecules require careful selection of measurement procedures. This document provides guidance relevant to dosimetry for first-in human and early phase clinical trials of such novel agents. The guideline includes a short introduction to different emitters and carrier molecules, followed by recommendations on the methods for activity measurement, pharmacokinetic analyses, as well as absorbed dose calculations and uncertainty analyses. The optimal use of preclinical information and studies involving diagnostic analogues is discussed. Good practice reporting is emphasised, and relevant dosimetry parameters and method descriptions to be included are listed. Three examples of first-in-human dosimetry studies, both for diagnostic tracers and radionuclide therapies, are given.


Asunto(s)
Medicina Nuclear , Radiofármacos , Humanos , Medicina Nuclear/métodos , Radiometría/métodos , Cintigrafía , Radiofármacos/uso terapéutico , Guías de Práctica Clínica como Asunto , Ensayos Clínicos como Asunto
2.
Eur Radiol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507053

RESUMEN

OBJECTIVE: To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institution cohort. METHODS: Patients who underwent multiparametric MRI and prostatectomy in our institution in 2015-2018 were considered; a total of 949 patients were included. Gradient-boosted decision tree models were separately trained using clinical features alone and in combination with radiological reporting and/or prostate radiomic features to predict pathological T, pathological N, ISUP score, and their change from preclinical assessment. Model behavior was analyzed in terms of performance, feature importance, Shapley additive explanation (SHAP) values, and mean absolute error (MAE). The best model was compared against a naïve model mimicking clinical workflow. RESULTS: The model including all variables was the best performing (AUC values ranging from 0.73 to 0.96 for the six endpoints). Radiomic features brought a small yet measurable boost in performance, with the SHAP values indicating that their contribution can be critical to successful prediction of endpoints for individual patients. MAEs were lower for low-risk patients, suggesting that the models find them easier to classify. The best model outperformed (p ≤ 0.0001) clinical baseline, resulting in significantly fewer false negative predictions and overall was less prone to under-staging. CONCLUSIONS: Our results highlight the potential benefit of integrative ML models for pathological status prediction in PCa. Additional studies regarding clinical integration of such models can provide valuable information for personalizing therapy offering a tool to improve non-invasive prediction of pathological status. CLINICAL RELEVANCE STATEMENT: The best machine learning model was less prone to under-staging of the disease. The improved accuracy of our pathological prediction models could constitute an asset to the clinical workflow by providing clinicians with accurate pathological predictions prior to treatment. KEY POINTS: • Currently, the most common strategies for pre-surgical stratification of prostate cancer (PCa) patients have shown to have suboptimal performances. • The addition of radiological features to the clinical features gave a considerable boost in model performance. Our best model outperforms the naïve model, avoiding under-staging and resulting in a critical advantage in the clinic. •Machine learning models incorporating clinical, radiological, and radiomics features significantly improved accuracy of pathological prediction in prostate cancer, possibly constituting an asset to the clinical workflow.

3.
Eur J Nucl Med Mol Imaging ; 50(7): 1861-1868, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086275

RESUMEN

Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.


Asunto(s)
Tumores Neuroendocrinos , Radiometría , Humanos , Radiometría/métodos , Radioisótopos de Yodo , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/radioterapia , 3-Yodobencilguanidina
4.
BMC Cancer ; 23(1): 1236, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102575

RESUMEN

BACKGROUND: Currently, main treatment strategies for early-stage non-small cell lung cancer (ES-NSCLC) disease are surgery or stereotactic body radiation therapy (SBRT), with successful local control rates for both approaches. However, regional and distant failure remain critical in SBRT, and it is paramount to identify predictive factors of response to identify high-risk patients who may benefit from more aggressive approaches. The main endpoint of the MONDRIAN trial is to identify multi-omic biomarkers of SBRT response integrating information from the individual fields of radiomics, genomics and proteomics. METHODS: MONDRIAN is a prospective observational explorative cohort clinical study, with a data-driven, bottom-up approach. It is expected to enroll 100 ES-NSCLC SBRT candidates treated at an Italian tertiary cancer center with well-recognized expertise in SBRT and thoracic surgery. To identify predictors specific to SBRT, MONDRIAN will include data from 200 patients treated with surgery, in a 1:2 ratio, with comparable clinical characteristics. The project will have an overall expected duration of 60 months, and will be structured into five main tasks: (i) Clinical Study; (ii) Imaging/ Radiomic Study, (iii) Gene Expression Study, (iv) Proteomic Study, (v) Integrative Model Building. DISCUSSION: Thanks to its multi-disciplinary nature, MONDRIAN is expected to provide the opportunity to characterize ES-NSCLC from a multi-omic perspective, with a Radiation Oncology-oriented focus. Other than contributing to a mechanistic understanding of the disease, the study will assist the identification of high-risk patients in a largely unexplored clinical setting. Ultimately, this would orient further clinical research efforts on the combination of SBRT and systemic treatments, such as immunotherapy, with the perspective of improving oncological outcomes in this subset of patients. TRIAL REGISTRATION: The study was prospectively registered at clinicaltrials.gov (NCT05974475).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Multiómica , Estadificación de Neoplasias , Estudios Observacionales como Asunto , Proteómica , Radiocirugia/métodos
5.
BMC Med Imaging ; 23(1): 32, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774463

RESUMEN

BACKGROUND: Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs. METHODS: This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy. From the T2-weighted MR images, ground truth segmentation masks were established by consensus from two expert radiologists. The prostate was then automatically contoured with six different methods: (1) a multi-atlas algorithm, (2) a proprietary algorithm in the Syngo.Via medical imaging software, and four deep learning models: (3) a V-net trained from scratch, (4) a pre-trained 2D U-net, (5) a GAN extension of the 2D U-net, and (6) a segmentation-adapted EfficientDet architecture. The resulting segmentations were compared and scored against the ground truth masks with one 70/30 and one 50/50 train/test data split. We also analyzed the association between segmentation performance and clinical variables. RESULTS: The best performing method was the adapted EfficientDet (model 6), achieving a mean Dice coefficient of 0.914, a mean absolute volume difference of 5.9%, a mean surface distance (MSD) of 1.93 pixels, and a mean 95th percentile Hausdorff distance of 3.77 pixels. The deep learning models were less prone to serious errors (0.854 minimum Dice and 4.02 maximum MSD), and no significant relationship was found between segmentation performance and clinical variables. CONCLUSIONS: Deep learning-based segmentation techniques can consistently achieve Dice coefficients of 0.9 or above with as few as 50 training patients, regardless of architectural archetype. The atlas-based and Syngo.via methods found in commercial clinical software performed significantly worse (0.855[Formula: see text]0.887 Dice).


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Neoplasias de la Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Eur J Nucl Med Mol Imaging ; 49(6): 1778-1809, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35284969

RESUMEN

The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.


Asunto(s)
Traumatismos por Radiación , Receptores de Somatostatina , Humanos , Ligandos , Lutecio/uso terapéutico , Masculino , Antígeno Prostático Específico , Radioisótopos , Radiofármacos/efectos adversos , Somatostatina
7.
BMC Cancer ; 22(1): 358, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366825

RESUMEN

BACKGROUND: Breast-conserving surgery (BCS) and whole breast radiation therapy (WBRT) are the standard of care for early-stage breast cancer (BC). Based on the observation that most local recurrences occurred near the tumor bed, accelerated partial breast irradiation (APBI), consisting of a higher dose per fraction to the tumor bed over a reduced treatment time, has been gaining ground as an attractive alternative in selected patients with low-risk BC. Although more widely delivered in postoperative setting, preoperative APBI has also been investigated in a limited, though increasing, and number of studies. The aim of this study is to test the feasibility, safety and efficacy of preoperative radiotherapy (RT) in a single fraction for selected BC patients. METHODS: This is a phase I/II, single-arm and open-label single-center clinical trial using CyberKnife. The clinical investigation is supported by a preplanning section which addresses technical and dosimetric issues. The primary endpoint for the phase I study, covering the 1st and 2nd year of the research project, is the identification of the maximum tolerated dose (MTD) which meets a specific target toxicity level (no grade 3-4 toxicity). The primary endpoint for the phase II study (3rd to 5th year) is the evaluation of treatment efficacy measured in terms of pathological complete response rate. DISCUSSION: The study will investigate the response of BC to the preoperative APBI from different perspectives. While preoperative APBI represents a form of anticipated boost, followed by WBRT, different are the implications for the scientific community. The study may help to identify good responders for whom surgery could be omitted. It is especially appealing for patients unfit for surgery due to advanced age or severe co-morbidities, in addition to or instead of systemic therapies, to ensure long-term local control. Moreover, patients with oligometastatic disease synchronous with primary BC may benefit from APBI on the intact tumor in terms of tumor progression free survival. The study of response to RT can provide useful information about BC radiobiology, immunologic reactions, genomic expression, and radiomics features, to be tested on a larger scale. TRIAL REGISTRATION: The study was prospectively registered at clinicaltrials.gov ( NCT04679454 ).


Asunto(s)
Neoplasias de la Mama , Mama/patología , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Femenino , Humanos , Mastectomía Segmentaria , Resultado del Tratamiento
8.
Magn Reson Med ; 85(3): 1713-1726, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970859

RESUMEN

PURPOSE: To investigate the repeatability and reproducibility of radiomic features extracted from MR images and provide a workflow to identify robust features. METHODS: T2 -weighted images of a pelvic phantom were acquired on three scanners of two manufacturers and two magnetic field strengths. The repeatability and reproducibility of features were assessed by the intraclass correlation coefficient and the concordance correlation coefficient, respectively, and by the within-subject coefficient of variation, considering repeated acquisitions with and without phantom repositioning, and with different scanner and acquisition parameters. The features showing intraclass correlation coefficient or concordance correlation coefficient >0.9 were selected, and their dependence on shape information (Spearman's ρ > 0.8) analyzed. They were classified for their ability to distinguish textures, after shuffling voxel intensities of images. RESULTS: From 944 two-dimensional features, 79.9% to 96.4% showed excellent repeatability in fixed position across all scanners. A much lower range (11.2% to 85.4%) was obtained after phantom repositioning. Three-dimensional extraction did not improve repeatability performance. Excellent reproducibility between scanners was observed in 4.6% to 15.6% of the features, at fixed imaging parameters. In addition, 82.4% to 94.9% of the features showed excellent agreement when extracted from images acquired with echo times 5 ms apart, but decreased with increasing echo-time intervals, and 90.7% of the features exhibited excellent reproducibility for changes in pulse repetition time. Of nonshape features, 2.0% was identified as providing only shape information. CONCLUSION: We showed that radiomic features are affected by MRI protocols and propose a general workflow to identify repeatable, reproducible, and informative radiomic features to ensure robustness of clinical studies.


Asunto(s)
Imagen por Resonancia Magnética , Pelvis , Frecuencia Cardíaca , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
9.
Eur Radiol ; 31(2): 716-728, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32852590

RESUMEN

OBJECTIVES: Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). METHODS: This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. RESULTS: Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. CONCLUSIONS: MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice. KEY POINTS: • A radiomic model was used to classify PCa aggressiveness. • Radiomic analysis was performed on T2-W magnetic resonance images of the whole prostate gland. • The most predictive features belong to the texture (57%) and intensity (43%) domains.


Asunto(s)
Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Estudios Retrospectivos
10.
Q J Nucl Med Mol Imaging ; 65(4): 327-332, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881850

RESUMEN

Nuclear medicine therapeutic procedures have considerably expanded over the last few years, and their number is expected to grow exponentially in the future. Internal dosimetry has significantly developed as well, but has not yet been uniformly accepted as a valuable tool for prediction of therapeutic efficacy and toxicity. In this paper, we briefly summarize some of the arguments about the implementation of internal dosimetry in clinical practice. In addition, we provide a few examples of radionuclide anticancer therapies for which internal dosimetry demonstrated a significant impact on treatment optimization and patient outcome.


Asunto(s)
Medicina Nuclear , Humanos , Radiometría , Cintigrafía
12.
Eur J Nucl Med Mol Imaging ; 45(13): 2426-2441, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29785514

RESUMEN

PURPOSE: Peptide receptor radionuclide therapy (PRRT) with 90Y-labelled and 177Lu-labelled peptides is an effective strategy for the treatment of metastatic/nonresectable neuroendocrine tumours (NETs). Dosimetry provides important information useful for optimizing PRRT with individualized regimens to reduce toxicity and increase tumour responses. However, this strategy is not applied in routine clinical practice, despite the fact that several dosimetric studies have demonstrated significant dose-effect correlations for normal organ toxicity and tumour response that can better guide therapy planning. The present study reviews the key relationships and the radiobiological models available in the literature with the aim of providing evidence that optimization of PRRT is feasible through the implementation of dosimetry. METHODS: The MEDLINE database was searched combining specific keywords. Original studies published in the English language reporting dose-effect outcomes in patients treated with PRRT were chosen. RESULTS: Nine of 126 studies were selected from PubMed, and a further five were added manually, reporting on 590 patients. The studies were analysed and are discussed in terms of weak and strong elements of correlations. CONCLUSION: Several studies provided evidence of clinical benefit from the implementation of dosimetry in PRRT, indicating the potential contribution of this approach to reducing severe toxicity and/or reducing undertreatment that commonly occurs. Prospective trials, possibly multicentre, with larger numbers of patients undergoing quantitative dosimetry and with standardized methodologies should be carried out to definitively provide robust predictive paradigms to establish effective tailored PRRT.


Asunto(s)
Lutecio/efectos adversos , Lutecio/uso terapéutico , Medicina de Precisión/métodos , Radioisótopos/efectos adversos , Radioisótopos/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Receptores de Péptidos/metabolismo , Radioisótopos de Itrio/efectos adversos , Radioisótopos de Itrio/uso terapéutico , Humanos , Dosificación Radioterapéutica
14.
Eur J Nucl Med Mol Imaging ; 44(11): 1915-1927, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28681192

RESUMEN

BACKGROUND: Non-Small Cell Lung Cancer (NSCLC) is characterized by aggressiveness and includes the majority of thorax malignancies. The possibility of early stratification of patients as responsive and non-responsive to radiotherapy with a non-invasive method is extremely appealing. The distribution of the Fluorodeoxyglucose (18F-FDG) in tumours, provided by Positron-Emission-Tomography (PET) images, has been proved to be useful to assess the initial staging of the disease, recurrence, and response to chemotherapy and chemo-radiotherapy (CRT). OBJECTIVES: In the last years, particular efforts have been focused on the possibility of using ad interim 18F-FDG PET (FDGint) to evaluate response already in the course of radiotherapy. However, controversial findings have been reported for various malignancies, although several results would support the use of FDGint for individual therapeutic decisions, at least in some pathologies. The objective of the present review is to assemble comprehensively the literature concerning NSCLC, to evaluate where and whether FDGint may offer predictive potential. METHODS: Several searches were completed on Medline and the Embase database, combining different keywords. Original papers published in the English language from 2005 to 2016 with studies involving FDGint in patients affected by NSCLC and treated with radiation therapy or chemo-radiotherapy only were chosen. RESULTS: Twenty-one studies out of 970 in Pubmed and 1256 in Embase were selected, reporting on 627 patients. CONCLUSION: Certainly, the lack of univocal PET parameters was identified as a major drawback, while standardization would be required for best practice. In any case, all these papers denoted FDGint as promising and a challenging examination for early assessment of outcomes during CRT, sustaining its predictivity in lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Quimioradioterapia , Fluorodesoxiglucosa F18 , Humanos , Neoplasias Pulmonares/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Radiofármacos
15.
Q J Nucl Med Mol Imaging ; 61(2): 216-231, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26576734

RESUMEN

BACKGROUND: The purpose of this work is to implement a radiobiological model to compare different treatment schedules for Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu and 90Y. The principal radiobiological quantities were studied as a function of radionuclides, fractionation schemes, activity distribution in kidneys and tumor radiosensitivity. METHODS: Clinical data were used to derive representative absorbed doses for several treatment schemes for 177Lu-PRRT and for 90Y-PRRT and considered as input data for the radiobiological model. Both uniform and non-uniform activity distributions were considered for kidneys and cortex; for tumors a possible uptake reduction after each cycle and inter-patient radiosensitivity variability were investigated. Normal-Tissue-Complication-Probability (NTCP) and Tumor-Control-Probability (TCP) were evaluated. RESULTS: Hyper-cycling has a limited advantage in terms of BED reduction on kidneys for 177Lu, while for 90Y the effect is sizable and helps in reducing the NTCP. For all 177Lu-schemes the renal toxicity risk is negligible while for some 90Y-schemes the NTCP is not null. In case of tumor uptake reduction with cycles the treatment efficacy is reduced with a BED loss up to 46%. The TCP decreases when assuming normally-distributed tumor radiosensitivity values. CONCLUSIONS: This paper discusses how the combination of dosimetry and radiobiological modeling may help in exploring the link between the treatment schedule and the potential clinical outcome. The results highlight the capability of model to reproduce the available clinical data and provide useful qualitative information. Further investigation on dose distribution and dose uptake reduction with accurate clinical data is needed to progress in this field.


Asunto(s)
Lutecio/uso terapéutico , Modelos Biológicos , Radioisótopos/uso terapéutico , Radioterapia/métodos , Receptores de Péptidos/metabolismo , Radioisótopos de Itrio/uso terapéutico , Adulto , Algoritmos , Femenino , Humanos , Riñón/efectos de la radiación , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/radioterapia , Órganos en Riesgo , Radiometría
16.
Eur J Nucl Med Mol Imaging ; 42(1): 5-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25273832

RESUMEN

PURPOSE: Peptide receptor radionuclide therapy (PRRT) with (90)Y and (177)Lu provides objective responses in neuroendocrine tumours, and is well tolerated with moderate toxicity. We aimed to identify clinical parameters predictive of long-term renal and haematological toxicity (myelodysplastic syndrome and acute leukaemia). METHODS: Of 807 patients studied at IEO-Milan (1997-2013), 793 (98 %) received (177)Lu (278, 34.4 %), (90)Y (358, 44.4 %) or (177)Lu and (90)Y combined (157. 19.5 %), and 14 (2 %) received combinations of PRRT and other agents. Follow-up was 30 months (1-180 months). The parameters evaluated included renal risk factors, bone marrow toxicity and PRRT features. Data analysis included multiple regression, random forest feature selection, and recursive partitioning and regression trees. RESULTS: Treatment with (90)Y and (90)Y + (177)Lu was more likely to result in nephrotoxicity than treatment with (177)Lu alone (33.6 %, 25.5 % and 13.4 % of patients, respectively; p < 0.0001). Nephrotoxicity (any grade), transient and persistent, occurred in 279 patients (34.6 %) and was severe (grade 3 + 4) in 12 (1.5 %). In only 20-27 % of any nephrotoxicity was the disease modelled by risk factors and codependent associations (p < 0.0001). Hypertension and haemoglobin toxicity were the most relevant factors. Persistent toxicity occurred in 197 patients (24.3 %). In only 22-34 % of affected patients was the disease modelled by the clinical data (p < 0.0001). Hypertension (regression coefficient 0.14, p < 0.0001) and haemoglobin toxicity (regression coefficient 0.21, p < 0.0001) were pertinent factors. Persistent toxicity was associated with shorter PRRT duration from the first to the last cycle (mean 387 vs. 658 days, p < 0.004). Myelodysplastic syndrome occurred in 2.35 % of patients (modelled by the clinical data in 30 %, p < 0.0001). Platelet toxicity grade (2.05 ± 1.2 vs. 0.58 ± 0.8, p < 0.0001) and longer PRRT duration (22.6 ± 24 vs. 15.5 ± 9 months, p = 0.01) were relevant. Acute leukaemia occurred in 1.1 % of patients (modelled by the clinical data in 18 %, p < 0.0001). CONCLUSION: Identified risk factors provide a limited (<30 %) risk estimate even with target tissue dosimetry. These data strongly suggest the existence of unidentified individual susceptibilities to radiation-associated disease.


Asunto(s)
Lutecio/efectos adversos , Tumores Neuroendocrinos/radioterapia , Octreótido/efectos adversos , Radiofármacos/efectos adversos , Radioisótopos de Itrio/efectos adversos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Leucemia Mieloide Aguda/etiología , Lutecio/administración & dosificación , Lutecio/uso terapéutico , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Tumores Neuroendocrinos/diagnóstico , Octreótido/administración & dosificación , Octreótido/uso terapéutico , Dosis de Radiación , Radiofármacos/administración & dosificación , Radiofármacos/uso terapéutico , Receptores de Péptidos/metabolismo , Radioisótopos de Itrio/administración & dosificación , Radioisótopos de Itrio/uso terapéutico
17.
Phys Med ; 117: 103192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052710

RESUMEN

Absorbed radiation doses are essential in assessing the effects, e.g. safety and efficacy, of radiopharmaceutical therapy (RPT). Patient-specific absorbed dose calculations in the target or the organ at risk require multiple inputs. These include the number of disintegrations in the organ, i.e. the time-integrated activities (TIAs) of the organs, as well as other parameters describing the process of radiation energy deposition in the target tissue (i.e. mean energy per disintegration, radiation dose constants, etc). TIAs are then estimated by incorporating the area under the radiopharmaceutical's time-activity curve (TAC), which can be obtained by quantitative measurements of the biokinetics in the patient (typically based on imaging data such as planar scintigraphy, SPECT/CT, PET/CT, or blood and urine samples). The process of TAC determination/calculation for RPT generally depends on the user, e.g., the chosen number and schedule of measured time points, the selection of the fit function, the error model for the data and the fit algorithm. These decisions can strongly affect the final TIA values and thus the accuracy of calculated absorbed doses. Despite the high clinical importance of the TIA values, there is currently no consensus on processing time-activity data or even a clear understanding of the influence of uncertainties and variations in personalised RPT dosimetry related to user-dependent TAC calculation. As a first step towards minimising site-dependent variability in RPT dosimetry, this work provides an overview of quality assurance and uncertainty management considerations of the TIA estimation.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Radiofármacos/uso terapéutico , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Radiometría/métodos , Cintigrafía
18.
Phys Med ; 117: 103188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042710

RESUMEN

Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.


Asunto(s)
Tortugas , Animales , Humanos , Radiometría , Radiofármacos/uso terapéutico , Dosificación Radioterapéutica
19.
Med Phys ; 51(1): 522-532, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712869

RESUMEN

BACKGROUND: Radiopharmaceutical therapy (RPT) is an increasingly adopted modality for treating cancer. There is evidence that the optimization of the treatment based on dosimetry can improve outcomes. However, standardization of the clinical dosimetry workflow still represents a major effort. Among the many sources of variability, the impact of using different Dose Voxel Kernels (DVKs) to generate absorbed dose (AD) maps by convolution with the time-integrated activity (TIA) distribution has not been systematically investigated. PURPOSE: This study aims to compare DVKs and assess the differences in the ADs when convolving the same TIA map with different DVKs. METHODS: DVKs of 3 × 3 × 3 mm3 sampling-nine for 177 Lu, nine for 90 Y-were selected from those most used in commercial/free software or presented in prior publications. For each voxel within a 11 × 11 × 11 matrix, the coefficient of variation (CoV) and the percentage difference between maximum and minimum values (% maximum difference) were calculated. The total absorbed dose per decay (SUM), calculated as the sum of all the voxel values in each kernel, was also compared. Publicly available quantitative SPECT images for two patients treated with 177 Lu-DOTATATE and PET images for two patients treated with 90 Y-microspheres were used, including organs at risk (177 Lu: kidneys; 90 Y: liver and healthy liver) and tumors' segmentations. For each patient, the mean AD to the volumes of interest (VOIs) was calculated using the different DVKs, the same TIA map and the same software tool for dose convolution, thereby focusing on the DVK impact. For each VOI, the % maximum difference of the mean AD between maximum and minimum values was computed. RESULTS: The CoV (% maximum difference) in voxels of normalized coordinates [0,0,0], [0,1,0], and [0,1,1] were 5%(21%), 9%(35%), and 10%(46%) for the 177 Lu DVKs. For the case of 90 Y, these values were 2%(9%), 4%(14%), and 4%(16%). The CoV (% maximum difference) for SUM was 9%(33%) for 177 Lu, and 4%(15%) for 90 Y. The variability of the mean tumor and organ AD was up to 19% and 15% in 177 Lu-DOTATATE and 90 Y-microspheres patients, respectively. CONCLUSIONS: This study showed a considerable AD variability due exclusively to the use of different DVKs. A concerted effort by the scientific community would contribute to decrease these discrepancies, strengthening the consistency of AD calculation in RPT.


Asunto(s)
Radiometría , Radiofármacos , Humanos , Hígado , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos
20.
Phys Med ; 117: 103196, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104033

RESUMEN

PURPOSE: The use of molecular radiotherapy (MRT) has been rapidly evolving over the last years. The aim of this study was to assess the current implementation of dosimetry for MRTs in Europe. METHODS: A web-based questionnaire was open for treating centres between April and June 2022, and focused on 2020-2022. Questions addressed the application of 16 different MRTs, the availability and involvement of medical physicists, software used, quality assurance, as well as the target regions for dosimetry, whether treatment planning and/or verification were performed, and the dosimetric methods used. RESULTS: A total of 173 responses suitable for analysis was received from centres performing MRT, geographically distributed over 27 European countries. Of these, 146 centres (84 %) indicated to perform some form of dosimetry, and 97 % of these centres had a medical physicist available and almost always involved in dosimetry. The most common MRTs were 131I-based treatments for thyroid diseases and thyroid cancer, and [223Ra]RaCl2 for bone metastases. The implementation of dosimetry varied widely between therapies, from almost all centres performing dosimetry-based planning for microsphere treatments to none for some of the less common treatments (like 32P sodium-phosphate for myeloproliferative disease and [89Sr]SrCl2 for bone metastases). CONCLUSIONS: Over the last years, implementation of dosimetry, both for pre-therapeutic treatment planning and post-therapy absorbed dose verification, increased for several treatments, especially for microsphere treatments. For other treatments that have moved from research to clinical routine, the use of dosimetry decreased in recent years. However, there are still large differences both across and within countries.


Asunto(s)
Radiometría , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA