Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurooncol ; 168(2): 215-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38755519

RESUMEN

PURPOSE: Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS: CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS: Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS: Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , ADN Tumoral Circulante , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Niño , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/diagnóstico , Masculino , Femenino , Preescolar , Adolescente , Lactante , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Biopsia Líquida/métodos , Mutación
2.
Curr Oncol Rep ; 25(8): 847-855, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160547

RESUMEN

PURPOSE OF REVIEW: Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS: We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Neoplasias del Sistema Nervioso Central/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
3.
Pediatr Blood Cancer ; 69(4): e29596, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35129878

RESUMEN

Pineal anlage tumor is a rare pediatric tumor with clinical and histological features overlapping with pineoblastoma. Two patients with pineal anlage tumor, a 13-month-old female and an 11-month-old male, underwent subtotal resection, high-dose chemotherapy with autologous stem cell rescue, and radiation. Neither had tumor progression 50 months after diagnosis. The tumors underwent next-generation sequencing on a panel of 340 genes. Chromosomal copy gains and losses were present and differed between the tumors. No mutations or amplifications, including none specific to pineoblastoma, were identified.


Asunto(s)
Neoplasias Encefálicas , Glándula Pineal , Pinealoma , Neoplasias Supratentoriales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Niño , Aberraciones Cromosómicas , Femenino , Humanos , Lactante , Masculino , Mutación , Glándula Pineal/patología , Pinealoma/genética , Pinealoma/patología , Pinealoma/terapia , Neoplasias Supratentoriales/patología
4.
J Neurooncol ; 153(2): 225-237, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33963961

RESUMEN

PURPOSE: Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear. Patients with medulloblastoma often present with distant metastases and tumor recurrence is largely incurable, making them prime candidates for the study of novel approaches to prevent neuroaxis dissemination and recurrence. METHODS: Macrophage depletion was achieved using CSF-1 receptor inhibitors (CSF-1Ri), BLZ945 and AFS98, with or without whole brain radiation in a variety of medulloblastoma models, including patient-derived xenografts bearing Group 3 medulloblastoma and a transgenic Sonic Hedgehog (Ptch1+/-, Trp53-/-) medulloblastoma model. RESULTS: Effective reduction of microglia, TAM, and spinal cord macrophage with CSF-1Ri resulted in negligible effects on the rate of local and spinal recurrences or survival following radiation. Results were comparable between medulloblastoma subgroups. While notably few tumor-infiltrating lymphocytes (TILs) were detected, average numbers of CD3+ TILs and FoxP3+ Tregs did not differ between groups following treatment and tumor aggressiveness by Ki67 proliferation index was unaltered. CONCLUSION: In the absence of other microenvironmental influences, medulloblastoma-educated macrophages do not operate as tumor-supportive cells or promote leptomeningeal recurrence in these models. Our data add to a growing body of literature describing a distinct immunophenotype amid the medulloblastoma microenvironment and highlight the importance of appropriate pediatric modeling prior to clinical translation.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Transducción de Señal , Niño , Proteínas Hedgehog , Humanos , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Proteínas Tirosina Quinasas Receptoras , Receptor de Factor Estimulante de Colonias de Macrófagos , Microambiente Tumoral
5.
Pediatr Emerg Care ; 37(11): e772-e774, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30870339

RESUMEN

ABSTRACT: Hemophilia A is characterized by deficiency of factor VIII. We present a unique, illustrative case of an infant with a short history of neck pain and irritability without neurological deficits who was found to have a spinal epidural hematoma. The subsequent investigation for the etiology, including workup for nonaccidental trauma, led to a diagnosis of severe hemophilia A.


Asunto(s)
Hematoma Espinal Epidural , Hemofilia A , Hematoma Espinal Epidural/diagnóstico , Hematoma Espinal Epidural/diagnóstico por imagen , Hemofilia A/complicaciones , Hemofilia A/diagnóstico , Humanos , Lactante , Imagen por Resonancia Magnética , Dolor de Cuello
6.
J Neurooncol ; 148(3): 607-617, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32556862

RESUMEN

INTRODUCTION: Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation. METHODS: We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children's Hospital from 2009 to 2018 and analyzed survival using the Kaplan-Meier method. Molecular profiling was performed by targeted DNA sequencing and toxicities, steroid use, and palliative care utilization were evaluated. RESULTS: Median age at diagnosis was 10.9 years (18 months-18 years). Genetic alterations were detected in 26 genes and aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% for DIPG and 85%, 38%, and 16% for other pHGG. CONCLUSION: Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and superior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel therapeutics combined with standard therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma/tratamiento farmacológico , Adolescente , Bevacizumab/administración & dosificación , Neoplasias del Tronco Encefálico/patología , Niño , Preescolar , Glioma Pontino Intrínseco Difuso/patología , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Lactante , Irinotecán/administración & dosificación , Masculino , Clasificación del Tumor , Estudios Retrospectivos , Tasa de Supervivencia , Temozolomida/administración & dosificación
8.
Pediatr Blood Cancer ; 63(3): 547-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26488903

RESUMEN

A 3-year-old boy with sickle cell anemia (SCA) presented with progressive daily emesis and was found to have an anaplastic ependymoma. Radiation therapy and chemotherapy are usually employed after subtotal resections of anaplastic ependymomas, although the benefits from chemotherapy are unclear. To mitigate the risks of adjuvant treatment in this patient at risk for SCA-associated vasculopathy, renal impairment, and other end-organ damage, proton beam irradiation without chemotherapy was chosen. Scheduled packed red blood cell transfusions were instituted to maintain sickle hemoglobin levels less than 30%. This case highlights treatment complexities for malignant brain tumors in patients predisposed to treatment-related adverse effects.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/terapia , Neoplasias Encefálicas/complicaciones , Ependimoma/complicaciones , Neoplasias Encefálicas/diagnóstico , Preescolar , Ependimoma/diagnóstico , Humanos , Imagen por Resonancia Magnética , Masculino
9.
Neurooncol Adv ; 6(1): vdae126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290875

RESUMEN

Background: Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches. Methods: In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, not elsewhere classified (NEC) (2), and atypical teratoid/rhabdoid tumor (1) were analyzed. Results: Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and MYCN amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity or evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS. Conclusions: LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis at initial staging. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.

11.
J Hematol Oncol Pharm ; 14(4): 148-154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39238483

RESUMEN

BACKGROUND: A major obstacle in translating the therapeutic potential of chimeric antigen receptor (CAR) T cells to children with central nervous system (CNS) tumors is the blood-brain barrier. To overcome this limitation, preclinical and clinical studies have supported the use of repeated, locoregional intracranial CAR T-cell delivery. However, there is limited literature available describing the process for the involvement of an investigational drug service (IDS) pharmacy, particularly in the setting of a children's hospital with outpatient dosing for CNS tumors. OBJECTIVES: To describe Seattle Children's Hospital's experience in clinically producing CAR T cells and the implementation of IDS pharmacy practices used to deliver more than 300 intracranial CAR T-cell doses to children, as well as to share how we refined the processing techniques from CAR T-cell generation to the thawing of fractionated doses for intracranial delivery. METHODS: Autologous CD4+ and CD8+ T cells were collected and transduced to express HER2, EGFR, or B7-H3-specific CAR T cells. Cryopreserved CAR T cells were thawed by the IDS pharmacy before intracranial delivery to patients with recurrent/refractory CNS tumors or with diffuse intrinsic pontine glioma/diffuse midline glioma. RESULTS: The use of a thaw-and-dilute procedure for cryopreserved individual CAR T-cell doses provides reliable viability and is more efficient than typical thaw-and-wash protocols. Cell viability with the thaw-and-dilute protocol was approximately 75% and was always within 10% of the viability assessed at cryopreservation. Cell viability was preserved through 6 hours after thawing, which exceeded the 1-hour time frame from thawing to infusion. CONCLUSION: As the field of adoptive immunotherapy grows and continues to bring hope to patients with fatal CNS malignancies, it is critical to focus on improving the preparatory steps for CAR T-cell delivery.

12.
Neoplasia ; 36: 100870, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36599192

RESUMEN

Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites. Locoregional CAR T cell delivery via infusion through an intracranial catheter is currently under study in multiple early phase clinical trials. Here, we describe the Seattle Children's single-institution experience including the multidisciplinary process for the preparation of successful, repetitive intracranial T cell infusion for children and the catheter-related safety of our 307 intracranial CAR T cell doses.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Niño , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/terapia , Catéteres
13.
Cancer Discov ; 13(1): 114-131, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259971

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Antígenos B7 , Neoplasias del Tronco Encefálico/terapia , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA