Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830327

RESUMEN

Transglutaminases are protein-modifying enzymes involved in physiological and pathological processes with potent therapeutic possibilities. Human TG4, also called prostate transglutaminase, is involved in the development of autoimmune and tumour diseases. Although rodent TG4 is well characterised, biochemical characteristics of human TG4 that could help th e understanding of its way of action are not published. First, we analysed proteomics databases and found that TG4 protein is present in human tissues beyond the prostate. Then, we studied in vitro the transamidase activity of human TG4 and its regulation using the microtitre plate method. Human TG4 has low transamidase activity which prefers slightly acidic pH and a reducing environment. It is enhanced by submicellar concentrations of SDS suggesting that membrane proximity is an important regulatory event. Human TG4 does not bind GTP as tested by GTP-agarose and BODIPY-FL-GTPγS binding, and its proteolytic activation by dispase or when expressed in AD-293 cells was not observed either. We identified several potential human TG4 glutamine donor substrates in the AD-293 cell extract by biotin-pentylamine incorporation and mass spectrometry. Several of these potential substrates are involved in cell-cell interaction, adhesion and proliferation, suggesting that human TG4 could become an anticancer therapeutic target.


Asunto(s)
Colon/enzimología , Miocardio/enzimología , Próstata/enzimología , Transglutaminasas/metabolismo , Vejiga Urinaria/enzimología , Secuencia de Aminoácidos , Línea Celular Tumoral , Clonación Molecular , Estabilidad de Enzimas , Células Epiteliales/citología , Células Epiteliales/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dodecil Sulfato de Sodio/química , Especificidad por Sustrato , Distribución Tisular , Transglutaminasas/genética
2.
Anal Biochem ; 600: 113699, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32335063

RESUMEN

Blood coagulation factor XIII-A (FXIII-A), a member of the transglutaminase enzyme family, is best known for its fibrin clot stabilizing function during blood coagulation. It possesses amine incorporating and protein crosslinking transamidase activities, but it is also able to cleave the previously formed isopeptide bond by its isopeptidase activity. Our aim was to develop a protein-based assay for better characterization of FXIII-A isopeptidase activity. The first attempt applying the crosslinked D-dimer of fibrin as a substrate was not successful because of poor reproducibility. Then, the principle of an earlier published anisotropy based activity assay was adapted for the measurement of FXIII-A isopeptidase activity. After crosslinking the fluorescently labelled α2-antiplasmin derived peptide and S100A4(GST) lysine donor protein, this protease-resistant γ-glutamyl-ε-lysine isopeptide bond containing protein-peptide product was applied as a substrate for FXIII-A. Using this substrate and detecting decreasing anisotropy, kinetic measurement of FXIII-A isopeptidase activity was achieved at high sensitivity even in a complex biological sample and in the presence of inhibitor.


Asunto(s)
Liasas de Carbono-Nitrógeno/metabolismo , Factor XIIIa/metabolismo , Anisotropía , Liasas de Carbono-Nitrógeno/química , Liasas de Carbono-Nitrógeno/aislamiento & purificación , Factor XIIIa/química , Fluorescencia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA