Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 115(6): 1262-1276, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33341991

RESUMEN

Hsp70 is an evolutionarily conserved chaperone involved in maintaining protein homeostasis during normal growth and upon exposure to stresses. Mutations in the ß6/ß7 region of the substrate-binding domain (SBD) disrupt the SBD hydrophobic core resulting in impairment of the heat-shock response and prion propagation in yeast. To elucidate the mechanisms behind Hsp70 loss of function due to disruption of the SBD, we undertook targeted mutational analysis of key residues in the ß6/ß7 region. We demonstrate the critical functional role of the F475 residue across yeast cytosolic Hsp70-Ssa family. We identify the size of the hydrophobic side chain at 475 as the key factor in maintaining SBD stability and functionality. The introduction of amino acid variants to either residue 475, or close neighbor 483, caused instability and cleavage of the Hsp70 SBD and subsequent degradation. Interestingly, we found that Hsp70-Ssa cleavage may occur through a vacuolar carboxypeptidase (Pep4)-dependent mechanism rather than proteasomal. Mutations at 475 and 483 result in compromised ATPase function, which reduces protein re-folding activity and contributes to depletion of cytosolic Hsp70 in vivo. The combination of reduced functionality and stability of Hsp70-Ssa results in yeast cells that are compromised in their stress response and cannot propagate the [PSI+ ] prion.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Dominios Proteicos/genética , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión/genética , Proteínas HSP70 de Choque Térmico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación con Pérdida de Función/genética , Unión Proteica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142753

RESUMEN

The naturally occurring sulphur-containing histidine derivative, ergothioneine (EGT), exhibits potent antioxidant properties and has been proposed to confer human health benefits. Although it is only produced by select fungi and prokaryotes, likely to protect against environmental stress, the GRAS organism Saccharomyces cerevisiae does not produce EGT naturally. Herein, it is demonstrated that the recombinant expression of a single gene, Aspergillus fumigatus egtA, in S. cerevisiae results in EgtA protein presence which unexpectedly confers complete EGT biosynthetic capacity. Both High Performance Liquid Chromatography (HPLC) and LC−mass spectrometry (MS) analysis were deployed to detect and confirm EGT production in S. cerevisiae. The localisation and quantification of the resultant EGT revealed a significantly (p < 0.0001) larger quantity of EGT was extracellularly present in culture supernatants than intracellularly accumulated in 96 h yeast cultures. Methionine addition to cultures improved EGT production. The additional expression of two candidate cysteine desulfurases from A. fumigatus was thought to be required to complete EGT biosynthesis, namely AFUA_2G13295 and AFUA_3G14240, termed egt2a and egt2b in this study. However, the co-expression of egtA and egt2a in S. cerevisiae resulted in a significant decrease in the observed EGT levels (p < 0.05). The AlphaFold prediction of A. fumigatus EgtA 3-Dimensional structure illuminates the bidomain structure of the enzyme and the opposing locations of both active sites. Overall, we clearly show that recombinant S. cerevisiae can biosynthesise and secrete EGT in an EgtA-dependent manner which presents a facile means of producing EGT for biotechnological and biomedical use.


Asunto(s)
Ergotioneína , Antioxidantes/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Cisteína , Ácido Egtácico , Histidina/genética , Histidina/metabolismo , Humanos , Metionina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azufre
3.
Sci Rep ; 9(1): 16260, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700027

RESUMEN

Hsp70 is a highly conserved molecular chaperone critical for the folding of new and denatured proteins. While traditional models state that cells respond to stress by upregulating inducible HSPs, this response is relatively slow and is limited by transcriptional and translational machinery. Recent studies have identified a number of post-translational modifications (PTMs) on Hsp70 that act to fine-tune its function. We utilized mass spectrometry to determine whether yeast Hsp70 (Ssa1) is differentially modified upon heat shock. We uncovered four lysine residues on Ssa1, K86, K185, K354 and K562 that are deacetylated in response to heat shock. Mutation of these sites cause a substantial remodeling of the Hsp70 interaction network of co-chaperone partners and client proteins while preserving essential chaperone function. Acetylation/deacetylation at these residues alter expression of other heat-shock induced chaperones as well as directly influencing Hsf1 activity. Taken together our data suggest that cells may have the ability to respond to heat stress quickly though Hsp70 deacetylation, followed by a slower, more traditional transcriptional response.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Levaduras/metabolismo , Acetilación , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Proteica , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA