Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
2.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36521490

RESUMEN

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Asunto(s)
Cromatina , Interleucina-4 , Humanos , Ratones , Animales , Interleucina-4/genética , Interleucina-4/farmacología , Cromatina/genética , Cromatina/metabolismo , Macrófagos/metabolismo , Interferón gamma/genética , Interferón gamma/farmacología , Ciclo Celular/genética , División Celular
3.
Genes Dev ; 34(21-22): 1474-1492, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060136

RESUMEN

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Asunto(s)
Polaridad Celular/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Epigénesis Genética/genética , Macrófagos/citología , Factor de Transcripción STAT6/metabolismo , Activación Transcripcional/genética , Animales , Mapeo Cromosómico , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Humanos , Interleucina-4/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Dominios y Motivos de Interacción de Proteínas/genética , Factor de Transcripción STAT6/genética , Transcriptoma/genética
4.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332629

RESUMEN

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Asunto(s)
Epigénesis Genética/inmunología , Epigenómica/métodos , Regulación de la Expresión Génica/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , PPAR gamma/inmunología , Animales , Línea Celular , Células Cultivadas , Interleucina-4/inmunología , Interleucina-4/farmacología , Ligandos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo
5.
Immunity ; 48(1): 75-90.e6, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343442

RESUMEN

The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1ß production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.


Asunto(s)
Interleucina-4/metabolismo , Macrófagos/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Western Blotting , Línea Celular , Elementos de Facilitación Genéticos , Citometría de Flujo , Regulación de la Expresión Génica , Inflamasomas/metabolismo , Citometría de Barrido por Láser , Lipopolisacáridos/farmacología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Piroptosis/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Immunol Rev ; 317(1): 152-165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37074820

RESUMEN

Our laboratory has a long-standing research interest in understanding how lipid-activated transcription factors, nuclear hormone receptors, contribute to dendritic cell and macrophage gene expression regulation, subtype specification, and responses to a changing extra and intracellular milieu. This journey in the last more than two decades took us from identifying target genes for various RXR heterodimers to systematically mapping nuclear receptor-mediated pathways in dendritic cells to identifying hierarchies of transcription factors in alternative polarization in macrophages to broaden the role of nuclear receptors beyond strictly ligand-regulated gene expression. We detail here the milestones of the road traveled and draw conclusions regarding the unexpectedly broad role of nuclear hormone receptors as epigenomic components of dendritic cell and macrophage gene regulation as we are getting ready for the next challenges.


Asunto(s)
Epigenómica , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Factores de Transcripción
7.
Genes Dev ; 28(14): 1562-77, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030696

RESUMEN

RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.


Asunto(s)
Elementos de Facilitación Genéticos , Macrófagos/metabolismo , Neovascularización Fisiológica/fisiología , Receptores X Retinoide/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Ligandos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Compuestos Orgánicos/farmacología , ARN/metabolismo , Transcripción Genética/efectos de los fármacos
8.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886967

RESUMEN

The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable morphological changes, which have important consequences in the phagocytosis of L. casei by moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper (Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results. Taken together, these data suggested that formation of short bacterial chains helps to exert the potent immunomodulatory properties of L. casei BL23.


Asunto(s)
Células Dendríticas , Lacticaseibacillus casei , N-Acetil Muramoil-L-Alanina Amidasa , Células Dendríticas/inmunología , Humanos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/inmunología , Lacticaseibacillus casei/fisiología , Monocitos/inmunología , N-Acetil Muramoil-L-Alanina Amidasa/biosíntesis , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/inmunología , Fagocitosis
9.
Nucleic Acids Res ; 47(6): 2778-2792, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30799488

RESUMEN

The concept of tissue-specific gene expression posits that lineage-determining transcription factors (LDTFs) determine the open chromatin profile of a cell via collaborative binding, providing molecular beacons to signal-dependent transcription factors (SDTFs). However, the guiding principles of LDTF binding, chromatin accessibility and enhancer activity have not yet been systematically evaluated. We sought to study these features of the macrophage genome by the combination of experimental (ChIP-seq, ATAC-seq and GRO-seq) and computational approaches. We show that Random Forest and Support Vector Regression machine learning methods can accurately predict chromatin accessibility using the binding patterns of the LDTF PU.1 and four other key TFs of macrophages (IRF8, JUNB, CEBPA and RUNX1). Any of these TFs alone were not sufficient to predict open chromatin, indicating that TF binding is widespread at closed or weakly opened chromatin regions. Analysis of the PU.1 cistrome revealed that two-thirds of PU.1 binding occurs at low accessible chromatin. We termed these sites labelled regulatory elements (LREs), which may represent a dormant state of a future enhancer and contribute to macrophage cellular plasticity. Collectively, our work demonstrates the existence of LREs occupied by various key TFs, regulating specific gene expression programs triggered by divergent macrophage polarizing stimuli.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Macrófagos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Biología Computacional , Regulación de la Expresión Génica/fisiología , Genoma , Aprendizaje Automático , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Coloración y Etiquetado/métodos , Activación Transcripcional/fisiología
10.
Nucleic Acids Res ; 46(9): 4425-4439, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29506156

RESUMEN

Retinoid X receptor (RXR) is an obligate heterodimeric partner of several nuclear receptors (NRs), and as such a central component of NR signaling regulating the immune and metabolic phenotype of macrophages. Importantly, the binding motifs of RXR heterodimers are enriched in the tissue-selective open chromatin regions of resident macrophages, suggesting roles in subtype specification. Recent genome-wide studies revealed that RXR binds to thousands of sites in the genome, but the mechanistic details how the cistrome is established and serves ligand-induced transcriptional activity remained elusive. Here we show that IL-4-mediated macrophage plasticity results in a greatly extended RXR cistrome via both direct and indirect actions of the transcription factor STAT6. Activation of STAT6 leads to chromatin remodeling and RXR recruitment to de novo enhancers. In addition, STAT6 triggers a secondary transcription factor wave, including PPARγ. PPARγ appears to be indispensable for the development of RXR-bound de novo enhancers, whose activities can be modulated by the ligands of the PPARγ:RXR heterodimer conferring ligand selective cellular responses. Collectively, these data reveal the mechanisms leading to the dynamic extension of the RXR cistrome and identify the lipid-sensing enhancer sets responsible for the appearance of ligand-preferred gene signatures in alternatively polarized macrophages.


Asunto(s)
Interleucina-4/fisiología , Macrófagos/metabolismo , PPAR gamma/metabolismo , Receptores X Retinoide/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Redes Reguladoras de Genes , Ligandos , Macrófagos/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Polimerasa II/metabolismo , Receptores X Retinoide/genética , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 114(40): 10725-10730, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923935

RESUMEN

Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Neoplasias Pulmonares/secundario , Melanoma Experimental/patología , Células Mieloides/patología , Receptores X Retinoide/fisiología , Transcripción Genética , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Células Cultivadas , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013235

RESUMEN

In sepsis, platelets may become activated via toll-like receptors (TLRs), causing microvascular thrombosis. Megakaryocytes (MKs) also express these receptors; thus, severe infection may modulate thrombopoiesis. To explore the relevance of altered miRNAs in platelet activation upon sepsis, we first investigated sepsis-induced miRNA expression in platelets of septic patients. The effect of abnormal Dicer level on miRNA expression was also evaluated. miRNAs were profiled in septic vs. normal platelets using TaqMan Open Array. We validated platelet miR-26b with its target SELP (P-selectin) mRNA levels and correlated them with clinical outcomes. The impact of sepsis on MK transcriptome was analyzed in MEG-01 cells after lipopolysaccharide (LPS) treatment by RNA-seq. Sepsis-reduced miR-26b was further studied using Dicer1 siRNA and calpain inhibition in MEG-01 cells. Out of 390 platelet miRNAs detected, there were 121 significantly decreased, and 61 upregulated in sepsis vs. controls. Septic platelets showed attenuated miR-26b, which were associated with disease severity and mortality. SELP mRNA level was elevated in sepsis, especially in platelets with increased mean platelet volume, causing higher P-selectin expression. Downregulation of Dicer1 generated lower miR-26b with higher SELP mRNA, while calpeptin restored miR-26b in MEG-01 cells. In conclusion, decreased miR-26b in MKs and platelets contributes to an increased level of platelet activation status in sepsis.


Asunto(s)
Plaquetas/metabolismo , Regulación de la Expresión Génica , Megacariocitos/metabolismo , MicroARNs/biosíntesis , Activación Plaquetaria , Sepsis/metabolismo , Adulto , Anciano , Plaquetas/patología , Femenino , Humanos , Masculino , Megacariocitos/patología , Persona de Mediana Edad , Sepsis/patología
13.
J Allergy Clin Immunol ; 132(2): 264-86, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23905916

RESUMEN

Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.


Asunto(s)
Células Dendríticas , Lípidos/farmacología , Macrófagos , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/fisiopatología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Humanos , Receptores X del Hígado , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Receptores Nucleares Huérfanos/metabolismo , PPAR gamma/metabolismo , Receptores de Calcitriol , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo
14.
BMC Genomics ; 14: 853, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314139

RESUMEN

BACKGROUND: Lysosomes play important roles in multiple aspects of physiology, but the problem of how the transcription of lysosomal genes is coordinated remains incompletely understood. The goal of this study was to illuminate the physiological contexts in which lysosomal genes are coordinately regulated and to identify transcription factors involved in this control. RESULTS: As transcription factors and their target genes are often co-regulated, we performed meta-analyses of array-based expression data to identify regulators whose mRNA profiles are highly correlated with those of a core set of lysosomal genes. Among the ~50 transcription factors that rank highest by this measure, 65% are involved in differentiation or development, and 22% have been implicated in interferon signaling. The most strongly correlated candidate was Stat6, a factor commonly activated by interleukin-4 (IL-4) or IL-13. Publicly available chromatin immunoprecipitation (ChIP) data from alternatively activated mouse macrophages show that lysosomal genes are overrepresented among Stat6-bound targets. Quantification of RNA from wild-type and Stat6-deficient cells indicates that Stat6 promotes the expression of over 100 lysosomal genes, including hydrolases, subunits of the vacuolar H⁺ ATPase and trafficking factors. While IL-4 inhibits and activates different sets of lysosomal genes, Stat6 mediates only the activating effects of IL-4, by promoting increased expression and by neutralizing undefined inhibitory signals induced by IL-4. CONCLUSIONS: The current data establish Stat6 as a broadly acting regulator of lysosomal gene expression in mouse macrophages. Other regulators whose expression correlates with lysosomal genes suggest that lysosome function is frequently re-programmed during differentiation, development and interferon signaling.


Asunto(s)
Interleucina-4/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Células Cultivadas , Análisis por Conglomerados , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Lisosomas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Cell Death Dis ; 14(3): 217, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977701

RESUMEN

Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 ß2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.


Asunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Trióxido de Arsénico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Tretinoina/farmacología , Serina-Treonina Quinasas TOR , Muerte Celular , Diana Mecanicista del Complejo 2 de la Rapamicina , Integrinas , Arsenicales/farmacología , Fosfohidrolasa PTEN/genética
16.
Front Immunol ; 14: 1168635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215144

RESUMEN

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Asunto(s)
Interleucina-4 , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Interleucina-4/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Regulación de la Expresión Génica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Front Immunol ; 14: 1297577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187374

RESUMEN

Introduction: Tobacco smoking generates airway inflammation in chronic obstructive pulmonary disease (COPD), and its involvement in the development of lung cancer is still among the leading causes of early death. Therefore, we aimed to have a better understanding of the disbalance in immunoregulation in chronic inflammatory conditions in smoker subjects with stable COPD (stCOPD), exacerbating COPD (exCOPD), or non-small cell lung cancer (NSCLC). Methods: Smoker controls without chronic illness were recruited as controls. Through extensive mapping of single cells, surface receptor quantification was achieved by single-cell mass cytometry (CyTOF) with 29 antibodies. The CyTOF characterized 14 main immune subsets such as CD4+, CD8+, CD4+/CD8+, CD4-/CD8-, and γ/δ T cells and other subsets such as CD4+ or CD8+ NKT cells, NK cells, B cells, plasmablasts, monocytes, CD11cdim, mDCs, and pDCs. The CD4+ central memory (CM) T cells (CD4+/CD45RA-/CD45RO+/CD197+) and CD4+ effector memory (EM) T cells (CD4+/CD45RA-/CD45RO+/CD197-) were FACS-sorted for RNA-Seq analysis. Plasma samples were assayed by Luminex MAGPIX® for the quantitative measurement of 17 soluble immuno-oncology mediators (BTLA, CD28, CD80, CD27, CD40, CD86, CTLA-4, GITR, GITRL, HVEM, ICOS, LAG-3, PD-1, PD-L1, PD-L2, TIM-3, TLR-2) in the four studied groups. Results: Our focus was on T-cell-dependent differences in COPD and NSCLC, where peripheral CD4+ central memory and CD4+ effector memory cells showed a significant reduction in exCOPD and CD4+ CM showed elevation in NSCLC. The transcriptome analysis delineated a perfect correlation of differentially expressed genes between exacerbating COPD and NSCLC-derived peripheral CD4+ CM or CD4+ EM cells. The measurement of 17 immuno-oncology soluble mediators revealed a disease-associated phenotype in the peripheral blood of stCOPD, exCOPD, and NSCLC patients. Discussion: The applied single-cell mass cytometry, the whole transcriptome profiling of peripheral CD4+ memory cells, and the quantification of 17 plasma mediators provided complex data that may contribute to the understanding of the disbalance in immune homeostasis generated or sustained by tobacco smoking in COPD and NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inmunofenotipificación , Células T de Memoria , Linfocitos T CD4-Positivos
18.
Biochim Biophys Acta ; 1812(8): 1007-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21382489

RESUMEN

Cells are constantly exposed to a large variety of lipids. Traditionally, these molecules were thought to serve as simple energy storing molecules. More recently it has been realized that they can also initiate and regulate signaling events that will decisively influence development, cellular differentiation, metabolism and related functions through the regulation of gene expression. Multicellular organisms dedicate a large family of nuclear receptors to these tasks. These proteins combine the defining features of both transcription factors and receptor molecules, and therefore have the unique ability of being able to bind lipid signaling molecules and transduce the appropriate signals derived from lipid environment to the level of gene expression. Intriguingly, the members of a subfamily of the nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) are able to sense and interpret fatty acid signals derived from dietary lipids, pathogenic lipoproteins or essential fatty acid metabolites. Not surprisingly, Peroxisome proliferator-activated receptors were found to be key regulators of lipid and carbohydrate metabolism. Unexpectedly, later studies revealed that Peroxisome proliferator-activated receptors are also able to modulate inflammatory responses. Here we summarize our understanding on how these transcription factors/receptors connect lipid metabolism to inflammation and some of the novel regulatory mechanisms by which they contribute to homeostasis and certain pathological conditions. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Asunto(s)
Ácidos Grasos/fisiología , Inflamación/fisiopatología , Metabolismo de los Lípidos/fisiología , Receptores Activados del Proliferador del Peroxisoma/fisiología , Factores de Transcripción/fisiología , Animales , Humanos , Receptores Citoplasmáticos y Nucleares/fisiología
19.
Life (Basel) ; 12(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36013384

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the world's leading causes of death and life-threatening conditions. Therefore, we review the complex vicious circle of causes responsible for T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental factors, and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and healthcare systems are dissected. Recent progress on the diagnosis and clinical management of T2DM, including both non-pharmacological and latest pharmacological treatment regimens, are summarized. The treatment of T2DM is becoming more complex as new medications are approved. This review is focused on the non-insulin treatments of T2DM to reach optimal therapy beyond glycemic management. We review experimental and clinical findings of SARS-CoV-2 risks that are attributable to T2DM patients. Finally, we shed light on the recent single-cell-based technologies and multi-omics approaches that have reached breakthroughs in the understanding of the pathomechanism of T2DM.

20.
Nutrients ; 13(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34371919

RESUMEN

Besides its well-known psychoactive effects, caffeine has a broad range of actions. It regulates several physiological mechanisms as well as modulates both native and adaptive immune responses by various ways. Although caffeine is assumed to be a negative regulator of inflammation, the effect on the secretion of pro- and anti-inflammatory cytokines is highly controversial. Macrophages are major mediators of inflammatory responses; however, the various subpopulations develop different effects ranging from the initiation to the resolution of inflammation. Here we report a comparative analysis of the effect of caffeine on two subpopulations of human monocyte-derived macrophages differentiated in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), resulting in M-MΦs and GM-MΦs, respectively. We showed that although TNF-α secretion was downregulated in both LPS-activated MΦ subtypes by caffeine, the secretion of IL-8, IL-6, and IL-1ß as well as the expression of Nod-like receptors was enhanced in M-MΦs, while it did not change in GM-MΦs. We showed that caffeine (1) altered adenosine receptor expression, (2) changed Akt/AMPK/mTOR signaling pathways, and (3) inhibited STAT1/IL-10 signaling axis in M-MΦs. We hypothesized that these alterations play an important modulatory role in the upregulation of NLRP3 inflammasome-mediated IL-1ß secretion in LPS-activated M-MΦs following caffeine treatment.


Asunto(s)
Cafeína/farmacología , Citocinas/metabolismo , Factores Inmunológicos/farmacología , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Células Cultivadas , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Fenotipo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA