Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Biochem ; 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645880

RESUMEN

FKBP51 is constitutively expressed by immune cells. As other FKBP family members, FKBP51 acts as a coreceptor for the natural products FK506 and rapamycin, which exhibit immunosuppressive effects. However, little is known about the intrinsic role of this large FKBP in the primary function of lymphocytes, that is, the adaptive immune response against foreign antigens, for example, pathogens. This paper aimed to investigate whether FKBP51 expression was modulated during lymphocyte activation. Moreover, as we recently identified a splicing isoform of FKBP51, namely FKBP51s, we also measured this splice protein, along with the canonical one, at different times of a peripheral blood mononuclear cell culture stimulated via T cell receptor. Our results show that the two FKBP51 isoforms were alternatively induced during the proliferative burst. Canonical FKBP51 increased in the time window between 48 and 96 h and its expression levels correlated with cyclin D levels. FKBP51s transiently increased earlier, at 24-36 h to reappearing later, at 120 h, when cyclin D expression returned at resting levels and proliferation ceased. Interestingly, within these two specific timeframes, FKBP51s accumulated in the nucleus. Here FKBP51s colocalized with the Foxp3 transcription factor at 36 h. Regulatory T cell (Treg) counts significantly decreased when FKBP51s was downmodulated. The coculture suppression assay suggested that FKBP51s supports the suppressive capability of Tregs. At 120 h, chromatin immunoprecipitation experiments found FKBP51s linked to CCND1 gene, suggesting a possible effect on gene transcription regulation, as previously demonstrated in melanoma. In conclusion, our study shows that FKBP5 isoforms are upregulated during lymphocyte activation, albeit on different timeframes. The activation of canonical FKBP51 coincides with proliferation hallmarks; FKBP5 splicing occurs early to sustain Treg development and late when proliferation ceases.

2.
Nature ; 551(7682): 634-638, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29088698

RESUMEN

Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.


Asunto(s)
Fusión de Membrana , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ligandos , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Vacuolas/metabolismo
3.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120144

RESUMEN

Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.


Asunto(s)
Fusión de Membrana , Simulación de Dinámica Molecular , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430709

RESUMEN

STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of ß2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.


Asunto(s)
Presentación de Antígeno , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Transducción de Señal , Inmunidad Innata , Antígenos de Histocompatibilidad , Proteínas de la Membrana/metabolismo
5.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141937

RESUMEN

Acute administration of a high level of extracellular citrate displays an anti-proliferative effect on both in vitro and in vivo models. However, the long-term effect of citrate treatment has not been investigated yet. Here, we address this question in PC3 cells, a prostate-cancer-derived cell line. Acute administration of high levels of extracellular citrate impaired cell adhesion and inhibited the proliferation of PC3 cells, but surviving cells adapted to grow in the chronic presence of 20 mM citrate. Citrate-resistant PC3 cells are significantly less glycolytic than control cells. Moreover, they overexpress short-form, citrate-insensitive phosphofructokinase 1 (PFK1) together with full-length PFK1. In addition, they show traits of mesenchymal-epithelial transition: an increase in E-cadherin and a decrease in vimentin. In comparison with PC3 cells, citrate-resistant cells display morphological changes that involve both microtubule and microfilament organization. This was accompanied by changes in homeostasis and the organization of intracellular organelles. Thus, the mitochondrial network appears fragmented, the Golgi complex is scattered, and the lysosomal compartment is enlarged. Interestingly, citrate-resistant cells produce less total ROS but accumulate more mitochondrial ROS than control cells. Consistently, in citrate-resistant cells, the autophagic pathway is upregulated, possibly sustaining their survival. In conclusion, chronic administration of citrate might select resistant cells, which could jeopardize the benefits of citrate anticancer treatment.


Asunto(s)
Citratos/farmacología , Neoplasias de la Próstata/metabolismo , Autofagia/efectos de los fármacos , Cadherinas/metabolismo , Proliferación Celular/efectos de los fármacos , Glucólisis , Humanos , Masculino , Microtúbulos/metabolismo , Células PC-3 , Fosfofructoquinasa-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vimentina/metabolismo
6.
EMBO Rep ; 17(11): 1590-1608, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27644261

RESUMEN

SNAREs fuse membranes in several steps. Trans-SNARE complexes juxtapose membranes, induce hemifused stalk structures, and open the fusion pore. A recent penetration model of fusion proposed that SNAREs force the hydrophilic C-termini of their transmembrane domains through the hydrophobic core of the membrane(s). In contrast, the indentation model suggests that the C-termini open the pore by locally compressing and deforming the stalk. Here we test these models in the context of yeast vacuole fusion. Addition of small hydrophilic tags renders bilayer penetration by the C-termini energetically unlikely. It preserves fusion activity, however, arguing against the penetration model. Addition of large protein tags to the C-termini permits SNARE activation, trans-SNARE pairing, and hemifusion but abolishes pore opening. Fusion proceeds if the tags are detached from the membrane by a hydrophilic spacer or if only one side of the trans-SNARE complex carries a protein tag. Thus, both sides of a trans-SNARE complex can drive pore opening. Our results are consistent with an indentation model in which multiple SNARE C-termini cooperate in opening the fusion pore by locally deforming the inner leaflets.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/fisiología , Membrana Celular , Exocitosis , Membrana Dobles de Lípidos , Lisosomas/fisiología , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
7.
Int J Mol Sci ; 19(7)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954118

RESUMEN

The H1069Q substitution is the most frequent mutation of the Cu transporter ATP7B that causes Wilson disease in the Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes, but, in the presence of excessive Cu, it relocates to the endo-lysosomal compartment to excrete Cu via bile canaliculi. In contrast, ATP7B-H1069Q is strongly retained in the ER, does not reach the Golgi complex and fails to move to the endo-lysosomal compartment in the presence of excessive Cu, thus causing toxic Cu accumulation. We have previously shown that, in transfected cells, the small heat-shock protein αB-crystallin is able to correct the mislocalization of ATP7B-H1069Q and its trafficking in the presence of Cu overload. Here, we first show that the α-crystallin domain of αB-crystallin mimics the effect of the full-length protein, whereas the N- and C-terminal domains have no such effect. Next, and most importantly, we demonstrate that a twenty-residue peptide derived from the α-crystallin domain of αB-crystallin fully rescues Golgi localization and the trafficking response of ATP7B-H1069Q in the presence of Cu overload. In addition, we show that this peptide interacts with the mutant transporter in the live cell. These results open the way to attempt developing a pharmacologically active peptide to specifically contrast the Wilson disease form caused by the ATP7B-H1069Q mutant.


Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Degeneración Hepatolenticular/metabolismo , Péptidos/química , Péptidos/farmacología , Cadena B de alfa-Cristalina/química , Animales , Células COS , Chlorocebus aethiops , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Transporte de Proteínas/efectos de los fármacos , Población Blanca
8.
Biochem Biophys Res Commun ; 479(2): 325-330, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27641668

RESUMEN

We have previously shown that αB-crystallin (CRYAB), a small heat shock protein (sHsp) that prevents irreversible aggregation of unfolded protein by an ATP-independent chaperone activity, plays a pivotal role in the biogenesis of multipass transmembrane proteins (TMPs) assisting their folding from the cytosolic side of the endoplasmic reticulum (ER) (D'Agostino et al., 2013). Here we present evidence, based on phosphomimetic substitutions, that the three phosphorytable serine residues at position 19, 45 and 59 of CRYAB play a different regulatory role in this novel chaperone activity: S19 and S45 have a strong inhibitory effect, either alone or in combination, while S59 has not and counteracts the inhibition caused by single phosphomimetic substitutions at S19 and S45. Interestingly, all phosphomimetic substitutions determine the formation of smaller oligomeric complexes containing CRYAB, indicating that the inhibitory effect seen for S19 and S45 cannot be ascribed to the reduction of oligomerization frequently associated to a decreased chaperone activity. These results indicate that phosphorylation finely regulates the chaperone activity of CRYAB with multipass TMPs and suggest a pivotal role for S59 in this process.


Asunto(s)
Chaperonas Moleculares/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Línea Celular Tumoral , ADN Complementario/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mutagénesis , Mutación , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Pliegue de Proteína , Serina/química , Transducción de Señal
9.
J Cell Sci ; 126(Pt 18): 4160-72, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843626

RESUMEN

The α-crystallin B chain (CRYAB or HspB5) is a cytosolic chaperone belonging to the small heat shock protein family, which is known to help in the folding of cytosolic proteins. Here we show that CRYAB binds the mutant form of at least two multispan transmembrane proteins (TMPs), exerting an anti-aggregation activity. It rescues the folding of mutant Frizzled4, which is responsible for a rare autosomal dominant form of familial exudative vitreoretinopathy (Fz4-FEVR), and the mutant ATP7B Cu transporter (ATP7B-H1069Q) associated with a common form of Wilson's disease. In the case of Fz4-FEVR, CRYAB prevents the formation of inter-chain disulfide bridges between the lumenal ectodomains of the aggregated mutant chains, which enables correct folding and promotes appropriate compartmentalization on the plasma membrane. ATP7B-H1069Q, with help from CRYAB, folds into the proper conformation, moves to the Golgi complex, and responds to copper overload in the same manner as wild-type ATP7B. These findings strongly suggest that CRYAB plays a pivotal role, previously undetected, in the folding of multispan TMPs and, from the cytosol, is able to orchestrate folding events that take place in the lumen of the ER. Our results contribute to the explanation of the complex scenario behind multispan TMP folding; additionally, they serve to expose interesting avenues for novel therapeutic approaches.


Asunto(s)
Proteínas de Choque Térmico/genética , Proteínas de la Membrana/genética , Chaperonas Moleculares/química , Cadena B de alfa-Cristalina/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Conformación Proteica , Pliegue de Proteína , Transfección , Cadena B de alfa-Cristalina/fisiología
10.
J Membr Biol ; 247(11): 1149-59, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25086772

RESUMEN

The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Receptores Frizzled/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Mutación/genética , Receptores Nicotínicos/genética
11.
Cell Biosci ; 14(1): 63, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760822

RESUMEN

BACKGROUND: Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches. RESULTS: Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA. CONCLUSIONS: Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.

12.
Front Mol Biosci ; 11: 1420691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993838

RESUMEN

Conformational diseases, such as Alzheimer's, Parkinson's and Huntington's diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington's disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT.

13.
iScience ; 27(3): 108959, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361619

RESUMEN

Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.

14.
J Cell Sci ; 124(Pt 21): 3545-56, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22045731

RESUMEN

E3 ubiquitin ligases give specificity to the ubiquitylation process by selectively binding substrates. Recently, their function has emerged as a crucial modulator of T-cell tolerance and immunity. However, substrates, partners and mechanism of action for most E3 ligases remain largely unknown. In this study, we identified the human T-cell co-receptor CD8 α-chain as binding partner of the ligand of Numb proteins X1 (LNX1p80 isoform) and X2 (LNX2). Both LNX mRNAs were found expressed in T cells purified from human blood, and both proteins interacted with CD8α in human HPB-ALL T cells. By using an in vitro assay and a heterologous expression system we showed that the interaction is mediated by the PDZ (PSD95-DlgA-ZO-1) domains of LNX proteins and the cytosolic C-terminal valine motif of CD8α. Moreover, CD8α redistributed LNX1 or LNX2 from the cytosol to the plasma membrane, whereas, remarkably, LNX1 or LNX2 promoted CD8α ubiquitylation, downregulation from the plasma membrane, transport to the lysosomes, and degradation. Our findings highlight the function of LNX proteins as E3 ligases and suggest a mechanism of regulation for CD8α localization at the plasma membrane by ubiquitylation and endocytosis.


Asunto(s)
Antígenos CD8/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos CD8/química , Antígenos CD8/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Dominios PDZ , Unión Proteica , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
15.
Oncol Res ; 31(4): 423-436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415743

RESUMEN

Scaffold proteins are crucial regulators of signaling networks, and their abnormal expression may favor the development of tumors. Among the scaffold proteins, immunophilin covers a unique role as 'protein-philin' (Greek 'philin' = friend) that interacts with proteins to guide their proper assembly. The growing list of human syndromes associated with the immunophilin defect underscores the biological relevance of these proteins that are largely opportunistically exploited by cancer cells to support and enable the tumor's intrinsic properties. Among the members of the immunophilin family, the FKBP5 gene was the only one identified to have a splicing variant. Cancer cells impose unique demands on the splicing machinery, thus acquiring a particular susceptibility to splicing inhibitors. This review article aims to overview the current knowledge of the FKBP5 gene functions in human cancer, illustrating how cancer cells exploit the scaffolding function of canonical FKBP51 to foster signaling networks that support their intrinsic tumor properties and the spliced FKBP51s to gain the capacity to evade the immune system.


Asunto(s)
Neoplasias , Proteínas de Unión a Tacrolimus , Humanos , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Neoplasias/genética , Transducción de Señal
16.
J Med Chem ; 66(3): 1790-1808, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36696678

RESUMEN

Sanfilippo syndrome comprises a group of four genetic diseases due to the lack or decreased activity of enzymes involved in heparan sulfate (HS) catabolism. HS accumulation in lysosomes and other cellular compartments results in tissue and organ dysfunctions, leading to a wide range of clinical symptoms including severe neurodegeneration. To date, no approved treatments for Sanfilippo disease exist. Here, we report the ability of N-substituted l-iminosugars to significantly reduce substrate storage and lysosomal dysfunctions in Sanfilippo fibroblasts and in a neuronal cellular model of Sanfilippo B subtype. Particularly, we found that they increase the levels of defective α-N-acetylglucosaminidase and correct its proper sorting toward the lysosomal compartment. Furthermore, l-iminosugars reduce HS accumulation by downregulating protein levels of exostosin glycosyltransferases. These results highlight an interesting pharmacological potential of these glycomimetics in Sanfilippo syndrome, paving the way for the development of novel therapeutic approaches for the treatment of such incurable disease.


Asunto(s)
Mucopolisacaridosis III , Humanos , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/metabolismo , Heparitina Sulfato/metabolismo , Lisosomas/metabolismo , Fibroblastos/metabolismo , Neuronas/metabolismo
17.
Small Methods ; 7(11): e2300447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37670547

RESUMEN

In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy.


Asunto(s)
Inteligencia Artificial , Saccharomyces cerevisiae , Citometría de Flujo/métodos , Citoplasma , Microscopía Fluorescente
18.
Open Biol ; 12(10): 220155, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36285443

RESUMEN

Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.


Asunto(s)
Calcio , Enfermedades por Almacenamiento Lisosomal , Humanos , Calcio/metabolismo , Lisosomas/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Autofagia/fisiología , Hidrolasas
19.
STAR Protoc ; 2(4): 100916, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34755119

RESUMEN

The lysosomal compartment is a key hub for cell metabolism, and morphological alterations have been described in several pathological conditions. Here, we describe the use of amino acid analogs modified by the presence of a methyl ester group that accumulates within lysosomes. This generates an intraluminal osmotic effect able to trigger a rapid and selective expansion of the lysosomal compartment within 2 h of treatment. We also present protocols to preserve lysosomal morphology, which yields a more accurate size measurement. For complete details on the use and execution of this protocol, please refer to Scerra et al. (2021).


Asunto(s)
Aminoácidos , Histocitoquímica/métodos , Lisosomas , Aminoácidos/química , Aminoácidos/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Ésteres/química , Ésteres/metabolismo , Células HeLa , Humanos , Lisosomas/química , Lisosomas/metabolismo , Lisosomas/fisiología , Microscopía Confocal
20.
Biochim Biophys Acta Mol Cell Res ; 1868(11): 119113, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329663

RESUMEN

Mucopolysaccharidoses (MPSs) are a group of inherited lysosomal storage disorders associated with the deficiency of lysosomal enzymes involved in glycosaminoglycan (GAG) degradation. The resulting cellular accumulation of GAGs is responsible for widespread tissue and organ dysfunctions. The MPS III, caused by mutations in the genes responsible for the degradation of heparan sulfate (HS), includes four subtypes (A, B, C, and D) that present significant neurological manifestations such as progressive cognitive decline and behavioral disorders. The established treatments for the MPS III do not cure the disease but only ameliorate non-neurological clinical symptoms. We previously demonstrated that the natural variant of the hepatocyte growth factor NK1 reduces the lysosomal pathology and reactivates impaired growth factor signaling in fibroblasts from MPS IIIB patients. Here, we show that the recombinant NK1 is effective in rescuing the morphological and functional dysfunctions of lysosomes in a neuronal cellular model of the MPS IIIB. More importantly, NK1 treatment is able to stimulate neuronal differentiation of neuroblastoma SK-NBE cells stable silenced for the NAGLU gene causative of the MPS IIIB. These results provide the basis for the development of a novel approach to possibly correct the neurological phenotypes of the MPS IIIB as well as of other MPSs characterized by the accumulation of HS and progressive neurodegeneration.


Asunto(s)
Heparitina Sulfato/metabolismo , Modelos Biológicos , Mucopolisacaridosis III/metabolismo , Neuronas/metabolismo , Sitios de Unión , Diferenciación Celular , Humanos , Lisosomas/metabolismo , Mucopolisacaridosis III/patología , Neuronas/patología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA