Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38541314

RESUMEN

This article reports the results of an investigation into the activity concentration of natural radionuclides in raw building materials for underground parking lots, together with the assessment of the radiation hazard for the public related to exposure to ionizing radiations. To this purpose, high-purity germanium (HPGe) γ-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. With the aim to assess any possible radiological health risk for the population, the absorbed γ-dose rate (D), the annual effective dose equivalent outdoor (AEDEout) and indoor (AEDEin), the activity concentration index (I), and the alpha index (Iα) were also estimated, resulting in values that were lower than the maximum recommended ones for humans. Finally, the extent of the correlations existing between the observed radioactivity and radiological parameters and of these parameters with the analyzed samples was quantified through statistical analyses, including Pearson's correlation, a principal component analysis (PCA), and a hierarchical cluster analysis (HCA). As a result, three clusters of the investigated samples were recognized based on their chemical composition and mineralogical nature. Noteworthily, this paper covers a certain gap in science since its topic does not appear in literature in this form. Thus, the authors underline the importance of this work to global knowledge in the environmental research and public health fields.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Humanos , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Salud Radiológica , Espectrometría gamma , Materiales de Construcción/análisis , Torio/análisis , Radioisótopos de Potasio/análisis , Radio (Elemento)/análisis , Contaminantes Radiactivos del Suelo/análisis
2.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124477

RESUMEN

In this paper, an assessment of the natural radioactivity level, radon exhalation, metal contamination, and mineralogy of a granodiorite rock sample from Stilo, in the Calabria region, Southern Italy is presented as a case study. This rock was employed as a building material in the area under study. The specific activity of 226Ra, 232Th and 40K natural radioisotopes was assessed through high-purity germanium (HPGe) gamma-ray spectrometry. Then, several indices such as the absorbed gamma dose rate (D), the annual effective dose equivalent (AEDE), the activity concentration index (ACI) and the alpha index (Iα), were quantified to determine any potential radiological health risk related to radiation exposure from the analyzed rock. Furthermore, E-PERM electret ion chambers and inductively coupled plasma mass spectrometry (ICP-MS) measurements were carried out to properly quantify the radon exhalation rate and any possible metal pollution, respectively. In particular, to further address metal pollution factors, the geo-accumulation index (Igeo) was calculated to properly address the toxicity levels of the ecosystem originating from the detected metals. Finally, with the aim of successfully discriminating the provenance of such naturally occurring radionuclides, a combined approach involving X-ray diffraction (XRD) and µ-Raman spectroscopy was employed for the identification of the main radioisotope-bearing minerals characterizing the investigated granodiorite. The results achieved in this case study can be taken as the basis for further inquiries into background levels of radioactivity and chemical contamination in natural stone employed as building materials.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36011465

RESUMEN

In this article, the authors report experimental results obtained for the assessment of the 226Ra content in 80 drinking water samples from the Calabria region, Southern Italy. The activity concentration, measured with the Perkin Elmer Tricarb 4910 TR Liquid Scintillation Counter (LSC) setup, was compared with the reference values reported in the Italian Legislative Decree 28/2016 in order to evaluate any possible radiological health hazards for the population in terms of 226Ra content due to the ingestion of the investigated drinking water. The obtained results put in evidence that the average 226Ra specific activity is lower than the LSC minimum detectable activity (MDA) in all cases, thus, excluding any radiological risk. They also represent the main reference for the investigated area and can be used as a baseline to extend this investigation to the whole region.


Asunto(s)
Agua Potable , Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Agua , Monitoreo de Radiación/métodos , Salud Radiológica , Radio (Elemento)/análisis , Conteo por Cintilación/métodos , Contaminantes Radiactivos del Agua/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-36078754

RESUMEN

In this article, an investigation of the natural radioactivity content of pyroclastic products from Mt. Etna, eastern Sicily, Southern Italy, was carried out. In particular, the assessment of the average activity concentration of the investigated radionuclides, related to the mineralogical phase composition of the analyzed samples, and the radiological health risk for the population, was performed. High Purity Germanium (HPGe) gamma-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. The absorbed gamma dose rate (D), the radium equivalent activity (Raeq), the hazard indices (Hin and Hex), the annual effective dose equivalent outdoor (AEDEout), and the excess lifetime cancer risk (ELCR) were also estimated in order to assess any possible radiological hazard for the population. In our case, they were found to be lower than the maximum recommended values for the population members, thus reasonably excluding radiological hazard effects. Moreover, the identification of the source of the aforementioned naturally occurring radionuclides was attempted by X-ray Diffraction (XRD) and Micro-Raman Scattering (MRS), thereby recognizing the main radioisotope-bearing minerals present in the investigated pyroclastic products. Finally, Pearson correlation, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were performed by processing observed radioactivity and radiological parameters in order to determine their correlation with the sampling locations.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Radioisótopos de Potasio/análisis , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Radio (Elemento)/análisis , Sicilia , Contaminantes Radiactivos del Suelo/análisis , Espectrometría gamma , Torio/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-34831901

RESUMEN

In the present article, a case study is reported regarding an investigation carried out in order to assess radioactivity concentration, heavy metals pollution and mineralogy of a beach stretch extending from Soverato to Squillace municipalities of the Ionian coast of Calabria, South of Italy, a popular tourist destination, especially in summer. The analysis of radionuclides contents was performed by using a High Purity Germanium (HPGe) gamma-ray detector, in order to quantify the average specific activity of 226Ra, 232Th and 40K natural radionuclides and 137Cs anthropogenic radioisotope. The absorbed dose rate and the annual effective dose equivalent radiological hazard indices were also estimated. Furthermore, X-ray Fluorescence (XRF) spectrometry measurements were carried out for the quantitative elemental analysis of the sand, in order to investigate any possible chemical pollution by heavy metals. For this aim, different indices such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Contamination Factor (CF) and Pollution Load Index (PLI) were applied to estimate the level of toxicity imposed on the ecosystem by the detected heavy metals. Finally, in order to identify the crystalline mineral components of the investigated sand samples, X-ray Diffraction (XRD) and Micro-Raman Scattering (MRS) measurements were carried out.


Asunto(s)
Metales Pesados , Radiactividad , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental , Metales Pesados/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA