RESUMEN
Invasive candidiasis (IC), caused by Candida yeasts, particularly Candida albicans, poses a significant threat with high mortality rates. Diagnosis is challenging due to Candida's common presence in human microbiota. To address this, our research group developed an immunofluorescence assay detecting Candida albicans Germ Tube Antibodies (CAGTA) in IC patients. CAGTA, indicative of invasive processes, is associated with a lower mortality rate in ICU patients. Based on this premise, this study aims to provide results regarding the lack of knowledge about the potential activity of CAGTA against invasive infections in humans caused by the fungus Candida albicans. Therefore, in order to characterize the activity of CAGTA produced by patients with IC, we used sera from 29 patients with IC caused by either C. albicans or non-albicans Candida species. Whole serum IgG antibodies were fractionated into anti-blastospores, CAGTA-enriched, and purified CAGTA and the assessments included XTT colorimetric assays for metabolic activity, CFU counts for viability, and microscopy for growth, viability, and morphological analysis. The CAGTA-enriched IgG fraction significantly reduced the metabolic activity and viability of C. albicans compared to anti-blastospores. Purified CAGTA altered germ tube cell wall surfaces, as revealed by electron microscopy, and exhibited fungicidal properties by DiBAC fluorescent staining. In conclusion, antibodies in response to invasive candidiasis have antifungal activity against Candida albicans, influencing metabolic activity, viability, and cell wall structure, leading to cell death. These findings suggest the potential utility of CAGTA as diagnostic markers and support the possibility of developing immunization protocols against Candida infections.
Asunto(s)
Candida albicans , Candidiasis Invasiva , Candidiasis , Humanos , Candida , Pared Celular , Anticuerpos Antifúngicos , Inmunoglobulina GRESUMEN
Recording electrical muscle activity using a dense matrix of detection points (high-density electromyography, EMG) is of interest in a range of different applications, from human-machine interfacing to rehabilitation and clinical assessment. The wider application of high-density EMG is, however, limited as the clinical interfaces are not convenient for practical use (e.g., require conductive gel/cream). In the present study, we describe a novel dry electrode (TEX) in which the matrix of sensing pads is screen printed on textile and then coated with a soft polymer to ensure good skin-electrode contact. To benchmark the novel solution, an identical electrode was produced using state-of-the-art technology (polyethylene terephthalate with hydrogel, PET) and a process that ensured a high-quality sample. The two electrodes were then compared in terms of signal quality as well as functional application. The tests showed that the signals collected using PET and TEX were characterised by similar spectra, magnitude, spatial distribution and signal-to-noise ratio. The electrodes were used by seven healthy subjects and an amputee participant to recognise seven hand gestures, leading to similar performance during offline analysis and online control. The comprehensive assessment, therefore, demonstrated that the proposed textile interface is an attractive solution for practical applications.
Asunto(s)
Hidrogeles , Textiles , Humanos , Electromiografía , Electrodos , PielRESUMEN
Candida albicans can cause superficial or systemic infections in humans, particularly in immunocompromised individuals. Vaccination strategies targeting specific antigens of C. albicans have shown promise in providing protection against invasive candidiasis. This study aimed to evaluate the immuno-protective capacity of a KLH conjugated complex peptide, 3P-KLH, containing epitopes from C. albicans antigens Als3, Hwp1, and Met6 in a murine model of hematogenously induced candidiasis. Mice immunized with 3P-KLH raised a specific antibody response, and protection against C. albicans infection was assessed. Immunized mice exhibited significantly lower fungal load in their kidneys compared to the control group. Moreover, 37.5 % of immunized mice survived 21 days after the infection, while all control animals died within the first nine days. These findings suggest that the 3P-KLH complex peptide, targeting C. albicans key antigens, elicits a protective immune response and reduces the severity of systemic Candida infection. In addition, the high binding affinity of the selected epitopes with MHC II alleles further supports the potential immunogenicity of this peptide in humans. This research provides insights into the development of novel immunotherapeutic approaches against invasive candidiasis.
Asunto(s)
Anticuerpos Antifúngicos , Antígenos Fúngicos , Candida albicans , Candidiasis , Proteínas Fúngicas , Vacunas Fúngicas , Animales , Candida albicans/inmunología , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Antígenos Fúngicos/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/genética , Ratones , Candidiasis/prevención & control , Candidiasis/inmunología , Anticuerpos Antifúngicos/inmunología , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Epítopos/inmunología , Péptidos/inmunología , Riñón/inmunología , Riñón/microbiología , Riñón/patologíaRESUMEN
This work reports on tailoring the magnetic properties of acrylonitrile butadiene styrene (ABS)-based composites for their application in magnetoactive systems, such as magnetic sensors and actuators. The magnetic properties of the composites are provided by the inclusion of varying permalloy (Py-Ni75Fe20Mo5) nanoparticle content within the ABS matrix. Composites with Py nanoparticle content up to 80 wt% were prepared and their morphological, mechanical, thermal, dielectric and magnetic properties were evaluated. It was found that ABS shows the capability to include high loads of the filler without negatively influencing its thermal and mechanical properties. In fact, the thermal properties of the ABS matrix are basically unaltered with the inclusion of the Py nanoparticles, with the glass transition temperatures of pristine ABS and its composites remaining around 105 °C. The mechanical properties of the composites depend on filler content, with the Young's modulus ranging from 1.16 GPa for the pristine ABS up to 1.98 GPa for the sample with 60 wt% filler content. Regarding the magnetic properties, the saturation magnetization of the composites increased linearly with increasing Py content up to a value of 50.9 emu/g for the samples with 80 wt% of Py content. A numerical model has been developed to support the findings about the magnetic behavior of the NP within the ABS. Overall, the slight improvement in the mechanical properties and the magnetic properties provides the ABS composites new possibilities for applications in magnetoactive systems, including magnetic sensors, actuators and magnetic field shielding.
RESUMEN
A multifunctional polymer-based composite has been designed based on poly(vinylidene fluoride) (PVDF) as polymer matrix and cobalt ferrite (CoFe2O4, CFO) and multiwalled carbon nanotubes (MWCNTs) as fillers, allowing to combine magnetic and electrical responses. The composites were prepared by solvent casting with a fixed 20 wt % concentration of CFO and varying the MWCNTs content between 0 and 3 wt %, allowing to tailor the electrical behavior. The morphology, polymer phase, and thermal and magnetic properties are nearly independent of the MWCNT filler content within the polymer matrix. On the other hand, the mechanical and electrical properties strongly depend on the MWCNT content and a maximum d.c. electrical conductivity value of 4 × 10-4 S·cm-1 has been obtained for the 20 wt %CFO-3 wt %MWCNT/PVDF sample, which is accompanied by an 11.1 emu·g-1 magnetization. The suitability of this composite for magnetic actuators with self-sensing strain characteristics is demonstrated with excellent response and reproducibility.
RESUMEN
Vulvovaginal candidiasis (VVC) is a prevalent condition affecting women worldwide. This study aimed to develop a rapid qPCR assay for the accurate identification of VVC etiological agents and reduced azole susceptibility. One hundred and twenty nine vaginal samples from an outpatient clinic (Bilbao, Spain) were analyzed using culture-based methods and a multiplex qPCR targeting fungal species, which identified Candida albicans as the predominant species (94.2%). Antifungal susceptibility tests revealed reduced azole susceptibility in three (3.48%) isolates. Molecular analysis identified several mutations in genes associated with azole resistance as well as novel mutations in TAC1 and MRR1 genes. In conclusion, we developed a rapid multiplex qPCR assay that detects C. albicans in vulvovaginal specimens and reported new mutations in resistance-related genes that could contribute to azole resistance.
RESUMEN
The biomedical area in the scope of tissue regeneration pursues the development of advanced materials that can target biomimetic approaches and, ideally, have an active role in the environment they are placed in. This active role can be related to or driven by morphological, mechanical, electrical, or magnetic stimuli, among others. This work reports on the development of active biomaterials based on poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid), PHBV, a piezoelectric and biodegradable polymer, for tissue regeneration application by tailoring its morphology and functional response. PHBV films with different porosities were obtained using the solvent casting method, resorting to high-boiling-point solvents, as N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO), and the combination of chloroform (CF) and DMF for polymer dissolution. Furthermore, magnetoelectric biomaterials were obtained through the combination of the piezoelectric PHBV with magnetostrictive iron oxide (Fe3O4) nanoparticles. Independently of the morphology or filler content, all biomaterials proved to be suitable for biomedical applications.
RESUMEN
Blood culture methods show low sensitivity, so reliable non-culture diagnostic tests are needed to help clinicians with the introduction, de-escalation, and discontinuation of antifungal therapy in patients with suspected invasive candidiasis (IC). We evaluated different biomarkers for the diagnosis of IC in immunocompetent and immunocompromised patients at risk for developing invasive fungal diseases. The specificity of Candida albicans germ-tube antibodies (CAGTA) detection was high (89%-100%), but sensitivity did not exceed 61% even after raising the cut-off from 1/160 to 1/80. We developed enzyme-linked immunoassays detecting antibodies against C. albicans proteins (Als3-N, Hwp1-N, or Met6) that resulted more sensitive (66%-92%) but less specific than CAGTA assay. The combination of 1,3-beta-D-glucan (BDG) detection and CAGTA results provided the highest diagnostic usefulness in immunocompetent patients. However, in immunocompromised patients, anti-Met6 antibodies was the best biomarker, both, alone or in combination with BDG.