Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Toxicol Environ Health B Crit Rev ; 27(4): 153-187, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38517360

RESUMEN

The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Transporte Biológico , Modelos Teóricos
2.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491339

RESUMEN

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Asunto(s)
Evolución Biológica , Biología Evolutiva , Investigación , Animales , América Latina
3.
Parasitology ; 143(12): 1569-79, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27574112

RESUMEN

Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target ß-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.


Asunto(s)
Desarrollo Embrionario , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno/metabolismo , Rhodnius/embriología , Rhodnius/enzimología , Animales , Benzazepinas/metabolismo , Inhibidores Enzimáticos/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Indoles/metabolismo , Oogénesis
4.
Genet Mol Biol ; 38(3): 278-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500431

RESUMEN

Genes that contain small open reading frames (smORFs) constitute a new group of eukaryotic genes and are expected to represent 5% of the Drosophila melanogaster transcribed genes. In this review we provide a historical perspective of their recent discovery, describe their general mechanism and discuss the importance of smORFs for future genomic and transcriptomic studies. Finally, we discuss the biological role of the most studied smORF so far, the Mlpt/Pri/Tal gene in arthropods. The pleiotropic action of Mlpt/Pri/Tal in D. melanogaster suggests a complex evolutionary scenario that can be used to understand the origins, evolution and integration of smORFs into complex gene regulatory networks.

5.
Genesis ; 51(12): 803-18, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24166799

RESUMEN

Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood-sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system.


Asunto(s)
Rhipicephalus/embriología , Animales , Evolución Biológica , Bovinos , Células del Cúmulo/citología , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Femenino , Modelos Animales , Filogenia , Rhipicephalus/citología
6.
Genesis ; 49(9): 698-718, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21671348

RESUMEN

Bone morphogenetic proteins (BMPs) perform a variety of functions during development. Considering a single BMP, what enables its multiple roles in tissues of varied sizes and shapes? What regulates the spatial distribution and activity patterns of the BMP in these different developmental contexts? Some BMP functions require controlling spread of the BMP morphogen, while others require formation of localized, high concentration peaks of BMP activity. Here we review work in Drosophila that describes spatial regulation of the BMP encoded by decapentaplegic (dpp) in different developmental contexts. We concentrate on extracellular modulation of BMP function and discuss the mechanisms that generate concentrated peaks of Dpp activity, subdivide territories of different activity levels or regulate spread of the Dpp morphogen from a point source. We compare these findings with data from vertebrates and non-model organisms to discuss how changes in the regulation of Dpp distribution by extracellular modulators may lead to variability in dpp function in different species.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Transporte Biológico , Proteínas Morfogenéticas Óseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espacio Extracelular/metabolismo , Morfogénesis , Oogénesis , ARN Mensajero/genética , Transducción de Señal/genética , Especificidad de la Especie
7.
Artículo en Inglés | MEDLINE | ID: mdl-33930525

RESUMEN

DNA topoisomerase II enzymes maintain DNA stability during vital processes, such as genome replication, transcription and chromosomal segregation during mitosis and meiosis. In the present work, we analyzed functional aspects of the DNA topoisomerase II (AeTopII) enzyme of the mosquito Aedes aegypti. Here, we show that AeTopII mRNA is expressed at all stages of mosquito development. By in situ hybridization, we found that the AeTopII mRNA is concentrated along the ovarian follicular cells as well as in the region of the follicles. The observed expression profiles likely reflect increased topoisomerase II cellular requirements due to the intense ovarian growth and egg production following blood feeding in Ae. aegypti females. The drug etoposide, a classic inhibitor of topoisomerase II, was used for in vivo testing with 2nd stage larvae, in order to investigate the functional importance of this enzyme in Ae. aegypti survival and development. Inhibition of topoisomerase II activity with etoposide concentrations ranging from 10 to 200 µM did not leads to the immediate death of larvae. However, after 10 days of observation, etoposide treatments resulted in 30-40% decrease in survival, in a dose dependent manner, with persisting larvae and pupae presenting incomplete development, as well as morphological abnormalities. Also, approximately 50% of the treated larvae did not reach the pupal stage. Thus, we conclude that AeTopII is a vital enzyme in the development of Ae. aegypti and its sensitivity to inhibitors should be explored for potential chemical agents to be used in vector control.


Asunto(s)
Aedes , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido/toxicidad , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Inhibidores de Topoisomerasa II/toxicidad , Aedes/enzimología , Aedes/crecimiento & desarrollo , Animales
8.
Ecol Evol ; 11(15): 10119-10132, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367563

RESUMEN

The quillwort Isoëtes cangae is a critically endangered species occurring in a single lake in Serra dos Carajás, Eastern Amazon. Low genetic diversity and small effective population sizes (N e) are expected for narrow endemic species (NES). Conservation biology studies centered in a single species show some limitations, but they are still useful considering the limited time and resources available for protection of species at risk of extinction. Here, we evaluated the genetic diversity, population structure, N e, and minimum viable population (MVP) of I. cangae to provide information for effective conservation programs. Our analyses were based on 55 individuals collected from the Amendoim Lake and 35,638 neutral SNPs. Our results indicated a single panmictic population, moderate levels of genetic diversity, and N e in the order of thousands, contrasting the expected for NES. Negative FIS values were also found, suggesting that I. cangae is not under risk of inbreeding depression. Our findings imply that I. cangae contains enough genetic diversity to ensure evolutionary potential and that all individuals should be treated as one demographic unit. These results provide essential information to optimize ex situ conservation efforts and genetic diversity monitoring, which are currently applied to guide I. cangae conservation plans.

10.
Zootaxa ; 4808(1): zootaxa.4808.1.9, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33055995

RESUMEN

Despite extensive taxonomic work on the Neotropical fauna of the spider genus Micrathena Sundevall, for 27 out of 117 (23%) species only the female morphology has been described, and some of the previously hypothesized male-female matches have been proven erroneous. This work provides new insight about sex matching in two species: Micrathena ruschii (Mello-Leitão, 1945) and Micrathena lata Chickering, 1960. For Micrathena ruschii, the male previously hypothesized to belong to this species was collected with females in Itatiaia; we here present morphologically different males, also collected with females, in Macaé, both in Rio de Janeiro, Brazil. Through a DNA barcoding approach, we present molecular evidence indicating conspecificity of M. ruschii females with the males collected in Macaé, proving the male from Itatiaia to be a misidentification. Therefore, a description of the correct male of Micrathena ruschii is herein provided. The male previously identified as M. ruschii probably represents an undescribed species but is not named here due to scarcity of material. We also describe for the first time the male of Micrathena lata based on one specimen collected in Misiones, Argentina. This male specimen belongs to the militaris species group, where M. lata is the only species from the Atlantic Forest previously only known by females. In addition, we detect an intersexual specimen of Micrathena ruschii, revealing the first case of intersexuality for the genus.


Asunto(s)
Arañas , Distribución Animal , Estructuras Animales , Animales , Femenino , Masculino
11.
Insect Biochem Mol Biol ; 118: 103307, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31857215

RESUMEN

Several research groups around the world have studied diverse aspects of energy metabolism in arthropod disease vectors, with the aim of discovering potential control targets. As in all oviparous organisms, arthropod embryonic development is characterized by the mobilization of maternally-derived metabolites for the formation of new tissues and organs. Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase described as an important regulator of metabolism and development in a wide range of organisms. GSK-3 was first identified based on its action upon glycogen synthase, a central enzyme in glycogen biosynthesis. Currently, it is recognized as a key component of multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, cell migration, and immune response. The present review will describe the current knowledge on GSK-3 activation and its role in morphogenesis and embryonic metabolism in arthropods. Altogether, the information discussed here can spark new approaches and strategies for further studies, enhancing our understanding of these important arthropod vectors and strengthening the resources in the search for novel control methods.


Asunto(s)
Proteínas de Artrópodos/genética , Artrópodos/genética , Desarrollo Embrionario/genética , Glucógeno Sintasa Quinasa 3/genética , Morfogénesis/genética , Animales , Proteínas de Artrópodos/metabolismo , Artrópodos/embriología , Artrópodos/metabolismo , Embrión no Mamífero/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo
12.
PeerJ ; 8: e10274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240624

RESUMEN

BACKGROUND: Two endemic lycophyte species Isoetes cangae and Isoetes serracarajensis have been recently described in the State of Pará in the Amazon forest located in northern Brazil. Isoetes L. has survived through three mass extinctions. Plants are considered small-sized, heterosporous, and can display a great diversity of physiological adaptations to different environments. Thus, the current study aimed to estimate the genetic variation of the populations of I. cangae and I. serracarajensis to generate information about their different mechanisms for survival at the same geographical location that could point to different reproductive, adaptative and dispersal strategies and should be considered for effective conservation strategies. METHODS: The genetic diversity and population structure of I. cangae and I. serracarajensis were investigated using Inter Simple Sequence Repeat (ISSR) molecular markers. Total genomic DNA was isolated, and the genetic diversity parameters were calculated. RESULTS: The sixteen primers produced 115 reproducible bands, 87% of which were polymorphic. A high level of polymorphic loci (81.74% and 68.48%) and a high Shannon index (Sh = 0.376 and 0.289) were observed for I. cangae and I. serracarajensis, respectively. The coefficient of genetic differentiation between population areas (GST) showed a higher value in I. serracarajensis (0.5440). Gene flow was higher in I. cangae (1.715) and lower in I. serracarajensis populations (0.419). Overall, the results further show that I. serracarajensis and I. cangae are two species with considerable genetic variation and that these differences may reflect their habitats and modes of reproduction. These results should be considered in the development of effective conservation strategies for both species.

13.
Sci Rep ; 10(1): 18296, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106528

RESUMEN

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Rhipicephalus/fisiología , Animales , Bovinos , Femenino , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Ovario/química , Embarazo , Rhipicephalus/genética , Saliva/química , Análisis de Secuencia de ARN
14.
Artículo en Inglés | MEDLINE | ID: mdl-30266630

RESUMEN

The mosquito Aedes aegypti is vector of several viruses including yellow fever virus, dengue virus chikungunya virus and Zika virus. One of the major problems involving these diseases transmission is that A. aegypti embryos are resistant to desiccation at the end of embryogenesis, surviving and remaining viable for several months inside the egg. Therefore, a fine metabolism control is essential to support these organisms throughout this period of resistance. The carbohydrate metabolism has been shown to be of great importance during arthropod embryogenesis, changing dramatically in order to promote growth and differentiation and in periods of resistance. This study investigated fundamental aspects of glucose metabolism in three stages of A. aegypti egg development: pre-desiccated, desiccated, and rehydrated. The activities of regulatory enzymes in carbohydrate metabolism such as pyruvate kinase, hexokinase and glucose 6-phosphate dehydrogenase were evaluated. We show that these activities were reduced in A. aegypti desiccated eggs, suggesting a decreased activity of glycolytic and pentose phosphate pathway. In contrast, gluconeogenesis increased in desiccated eggs, which uses protein as substrate to synthesize glucose. Accordingly, protein amount decreased during this stage, while glucose levels increased. Glycogen content, a major carbohydrate reserve in mosquitoes, was evaluated and shown to be lower in desiccated and rehydrated eggs, indicating it was used to supply energy metabolism. We observed a reactivation of carbohydrate catabolism and an increased gluconeogenesis after rehydration, suggesting that controlling glucose metabolism was essential not only to survive the period of desiccation, but also for subsequent larvae hatch. Taken together, these results contribute to a better understanding of metabolism regulation in A. aegypti eggs during desiccation periods. Such regulatory mechanisms enable higher survival rate and consequently promote virus transmission by these important disease vectors, making them interesting subjects in the search for novel control methods.


Asunto(s)
Aedes/crecimiento & desarrollo , Aedes/fisiología , Embrión no Mamífero/fisiología , Metabolismo Energético , Gluconeogénesis , Glucólisis , Aedes/embriología , Aedes/enzimología , Animales , Desecación , Embrión no Mamífero/enzimología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/fisiología , Estado de Hidratación del Organismo , Vía de Pentosa Fosfato , Filogenia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Estrés Fisiológico , Análisis de Supervivencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-30580107

RESUMEN

The cattle tick R. microplus is the biggest obstacle to livestock rearing in tropical countries. It is responsible for billions of dollars in losses every year, affecting meat and milk production, beef and dairy cattle, and the leather industry. The lack of knowledge and strategies to combat the tick only increases the losses, it leads to successive and uncontrolled applications of acaricides, favouring the selection of strains resistant to commercially available chemical treatments. In this paper, we tested 3­bromopyruvate (3­BrPA), an alkylating agent with a high affinity for cysteine residues, on the R. microplus metabolism. We found that 3-BrPA was able to induce cell death in an assay using BME26 strain cell cultures derived from embryos, it was also able to reduce cellular respiration in developing embryos. 3-BrPA is a nonspecific inhibitor, affecting enzymes of different metabolic pathways in R. microplus. In our experiments, we demonstrated that 3-BrPA was able to affect the glycolytic enzyme hexokinase, reducing its activity by approximately 50%; and it strongly inhibited triose phosphate isomerase, which is an enzyme involved in both glycolysis and gluconeogenesis. Also, the mitochondrial respiratory chain was affected, NADH cytochrome c reductase (complex I-III) and succinate cytochrome c reductase (complex II-III) were strongly inhibited by 3-BrPA. Glutamate dehydrogenase was also affected by 3-BrPA, showing a gradual inhibition of activity in all the 3-BrPA concentrations tested. Altogether, these results show that 3-BrPA is a harmful compound to the tick organism.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Piruvatos/farmacología , Rhipicephalus/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Consumo de Oxígeno
16.
Sci Rep ; 9(1): 4753, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30894596

RESUMEN

Reactive oxygen species (ROS) are natural byproducts of metabolism that have toxic effects well documented in mammals. In hematophagous arthropods, however, these processes are not largely understood. Here, we describe that Rhipicephalus microplus ticks and embryonic cell line (BME26) employ an adaptive metabolic compensation mechanism that confers tolerance to hydrogen peroxide (H2O2) at concentrations too high for others organisms. Tick survival and reproduction are not affected by H2O2 exposure, while BME26 cells morphology was only mildly altered by the treatment. Furthermore, H2O2-tolerant BME26 cells maintained their proliferative capacity unchanged. We evaluated several genes involved in gluconeogenesis, glycolysis, and pentose phosphate pathway, major pathways for carbohydrate catabolism and anabolism, describing a metabolic mechanism that explains such tolerance. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by glucose uptake and energy resource availability. Transient increase in ROS levels, oxygen consumption, and ROS-scavenger enzymes, as well as decreased mitochondrial superoxide levels, were indicative of cell adaptation to high H2O2 exposure, and suggested a tolerance strategy developed by BME26 cells to cope with oxidative stress. Moreover, NADPH levels increased upon H2O2 challenge, and this phenomenon was sustained mainly by G6PDH activity. Interestingly, G6PDH knockdown in BME26 cells did not impair H2O2 tolerance, but generated an increase in NADP-ICDH transcription. In agreement with the hypothesis of a compensatory NADPH production in these cells, NADP-ICDH knockdown increased G6PDH relative transcript level. The present study unveils the first metabolic evidence of an adaptive mechanism to cope with high H2O2 exposure and maintain redox balance in ticks.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Peróxido de Hidrógeno/toxicidad , Oxidantes/toxicidad , Estrés Oxidativo/fisiología , Rhipicephalus/metabolismo , Adaptación Fisiológica , Animales , Carbohidratos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Resistencia a Medicamentos , Tolerancia a Medicamentos/fisiología , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , NADP/análisis , Oxidación-Reducción
17.
Gene ; 671: 152-160, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859286

RESUMEN

High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis.


Asunto(s)
Aedes/crecimiento & desarrollo , Proteínas HMGB/química , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Aedes/genética , Aedes/metabolismo , Animales , Núcleo Celular/metabolismo , Dicroismo Circular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Fosforilación , Estructura Secundaria de Proteína , Distribución Tisular
19.
PLoS One ; 9(6): e98966, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926801

RESUMEN

Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W-) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.


Asunto(s)
Aedes/embriología , Aedes/microbiología , Glucógeno/metabolismo , Interacciones Huésped-Parásitos/fisiología , Simbiosis/fisiología , Wolbachia/fisiología , Aedes/metabolismo , Animales , Embrión no Mamífero/microbiología , Desarrollo Embrionario/fisiología , Femenino , Glucosa-6-Fosfato/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Masculino , Filogenia , Wolbachia/metabolismo
20.
Evodevo ; 5: 38, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25908955

RESUMEN

BACKGROUND: Insect embryonic dorso-ventral patterning depends greatly on two pathways: the Toll pathway and the Bone Morphogenetic Protein pathway. While the relative contribution of each pathway has been investigated in holometabolous insects, their role has not been explored in insects with a hemimetabolous type of development. The hemimetabolous insect Rhodnius prolixus, an important vector of Chagas disease in the Americas, develops from an intermediate germ band and displays complex movements during katatrepsis that are not observed in other orders. However, little is known about the molecular events that regulate its embryogenesis. Here we investigate the expression and function of genes potentially involved in the initial patterning events that establish the embryonic dorso-ventral axis in this hemipteran. RESULTS: We establish a staging system for early embryogenesis that allows us to correlate embryo morphology with gene expression profiles. Using this system, we investigate the role of Toll pathway genes during embryogenesis. Detailed analyses of gene expression throughout development, coupled with functional analyses using parental RNA interference, revealed that maternal Toll is required to establish germ layers along the dorso-ventral axis and for embryo placement along the anterior-posterior axis. Interestingly, knockdown of the Toll pathway effector Rp-dorsal appears to regulate the expression of the Bone Morphogenetic Protein antagonist Rp-short-gastrulation. CONCLUSIONS: Our results indicate that Toll signals are the initiating event in dorso-ventral patterning during Rhodnius embryogenesis, and this is the first report of a conserved role for Toll in a hemipteran. Furthermore, as Rp-dorsal RNA interference generates anteriorly misplaced embryos, our results indicate a novel role for Toll signals in establishment of the anterior-posterior axis in Rhodnius.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA