Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8013): 851-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Asunto(s)
Aves , Evolución Molecular , Genoma , Filogenia , Animales , Aves/genética , Aves/clasificación , Aves/anatomía & histología , Encéfalo/anatomía & histología , Extinción Biológica , Genoma/genética , Genómica , Densidad de Población , Masculino , Femenino
2.
Plant Biotechnol J ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572508

RESUMEN

Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.

3.
Mol Phylogenet Evol ; 196: 108089, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679302

RESUMEN

Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.


Asunto(s)
Camellia , Filogenia , Camellia/genética , Camellia/clasificación , Núcleo Celular/genética , Análisis de Secuencia de ADN , Teorema de Bayes , ADN de Plantas/genética , Evolución Molecular , Especiación Genética , Modelos Genéticos
4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34949638

RESUMEN

Migration allows animals to exploit spatially separated and seasonally available resources at a continental to global scale. However, responding to global climatic changes might prove challenging, especially for long-distance intercontinental migrants. During glacial periods, when conditions became too harsh for breeding in the north, avian migrants have been hypothesized to retract their distribution to reside within small refugial areas. Here, we present data showing that an Afro-Palearctic migrant continued seasonal migration, largely within Africa, during previous glacial-interglacial cycles with no obvious impact on population size. Using individual migratory track data to hindcast monthly bioclimatic habitat availability maps through the last 120,000 y, we show altered seasonal use of suitable areas through time. Independently derived effective population sizes indicate a growing population through the last 40,000 y. We conclude that the migratory lifestyle enabled adaptation to shifting climate conditions. This indicates that populations of resource-tracking, long-distance migratory species could expand successfully during warming periods in the past, which could also be the case under future climate scenarios.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Cambio Climático , Clima , Dinámica Poblacional , África , Algoritmos , Animales , Asia , Ecosistema , Europa (Continente) , Femenino , Cubierta de Hielo , Masculino , Modelos Biológicos
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34503999

RESUMEN

The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma , Genómica , Mamíferos/fisiología , Filogenia , Termogénesis/genética , Animales , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Selección Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Genome Res ; 29(9): 1506-1520, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31362936

RESUMEN

Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.


Asunto(s)
Peces/genética , Genómica/métodos , Secuenciación Completa del Genoma/métodos , Animales , Bovinos , Evolución Molecular , Genética de Población , Humanos , Modelos Genéticos , Selección Genética
7.
Mol Ecol ; 30(6): 1364-1380, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217068

RESUMEN

During the Last Glacial Maximum (LGM), global sea levels were 120-130 m lower than today, resulting in the emergence of most continental shelves and extirpation of subtidal organisms from these areas. During the interglacial periods, rapid inundation of shelf regions created a dynamic environment for coastal organisms, such as the charismatic leafy seadragon (Phycodurus eques, Syngnathidae), a brooder with low dispersal ability inhabiting kelp beds in temperate Australia. Reconstructions of the palaeoshoreline revealed that the increase of shallow areas since the LGM was not uniform across the species' range and we investigated the effects of these asymmetries on genetic diversity and structuring. Using targeted capture of 857 variable ultraconserved elements (UCEs, 2,845 single nucleotide polymorphisms) in 68 individuals, we found that the regionally different shelf topographies were paralleled by contrasting population genetic patterns. In the west, populations may not have persisted through sea-level lows because shallow seabed was very limited. Shallow genetic structure, weak expansion signals and a westward cline in genetic diversity indicate a postglacial recolonization of the western part of the range from a more eastern location following sea-level rise. In the east, shallow seabed persisted during the LGM and increased considerably after the flooding of large bays, which resulted in strong demographic expansions, deeper genetic structure and higher genetic diversity. This study suggests that postglacial flooding with rising sea levels produced locally variable signatures in colonizing populations.


Asunto(s)
Peces , Genética de Población , Animales , Australia , Inundaciones , Variación Genética , Kelp , Filogeografía , Dinámica Poblacional
8.
BMC Genomics ; 20(1): 334, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053061

RESUMEN

BACKGROUND: Iberian primitive breeds exhibit a remarkable phenotypic diversity over a very limited geographical space. While genomic data are accumulating for most commercial cattle, it is still lacking for these primitive breeds. Whole genome data is key to understand the consequences of historic breed formation and the putative role of earlier admixture events in the observed diversity patterns. RESULTS: We sequenced 48 genomes belonging to eight Iberian native breeds and found that the individual breeds are genetically very distinct with FST values ranging from 4 to 16% and have levels of nucleotide diversity similar or larger than those of their European counterparts, namely Jersey and Holstein. All eight breeds display significant gene flow or admixture from African taurine cattle and include mtDNA and Y-chromosome haplotypes from multiple origins. Furthermore, we detected a very low differentiation of chromosome X relative to autosomes within all analyzed taurine breeds, potentially reflecting male-biased gene flow. CONCLUSIONS: Our results show that an overall complex history of admixture resulted in unexpectedly high levels of genomic diversity for breeds with seemingly limited geographic ranges that are distantly located from the main domestication center for taurine cattle in the Near East. This is likely to result from a combination of trading traditions and breeding practices in Mediterranean countries. We also found that the levels of differentiation of autosomes vs sex chromosomes across all studied taurine and indicine breeds are likely to have been affected by widespread breeding practices associated with male-biased gene flow.


Asunto(s)
Cruzamiento , Bovinos/genética , Variación Genética , Genética de Población , Genoma , Genómica/métodos , Animales , Bovinos/clasificación , Cromosomas de los Mamíferos , ADN Mitocondrial/genética , Europa (Continente) , Femenino , Flujo Génico , Genotipo , Haplotipos , Masculino , Repeticiones de Microsatélite , Filogenia , Cromosoma Y
9.
Mol Ecol ; 28(16): 3709-3721, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31291502

RESUMEN

Arid environments provide ideal ground for investigating the mechanisms of adaptive evolution. High temperatures and low water availability are relentless stressors for many endotherms, including birds; yet birds persist in deserts. While physiological adaptation probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genetics) are largely uncharacterized. To explore this, we took an intraspecific approach that focused on a species that is resident over a mesic to arid gradient, the Karoo scrub-robin (Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary productivity), physiological (metabolic rates: a measure of energy expenditure), genotypic (genetic variation underlying the machinery of energy production) and microbiome (involved in processing food from where energy is retrieved) data, to infer the mechanism of physiological adaptation. We that found the variation in energetic physiology phenotypes and gut microbiome composition are associated with environmental features as well as with variation in genes underlying energy metabolic pathways. Specifically, we identified a small list of candidate adaptive genes, some of them with known ties to relevant physiology phenotypes. Together our results suggest that selective pressures on energetic physiology mediated by genes related to energy homeostasis and possibly microbiota composition may facilitate adaptation to local conditions and provide an explanation to the high avian intraspecific divergence observed in harsh environments.


Asunto(s)
Adaptación Fisiológica , Clima Desértico , Passeriformes/fisiología , Animales , Metabolismo Basal , Microbioma Gastrointestinal , Interacción Gen-Ambiente , Estudios de Asociación Genética , Genética de Población , Genotipo , Fenotipo , Sudáfrica
10.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250188

RESUMEN

Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian-Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates.


Asunto(s)
Evolución Biológica , Cefalópodos/clasificación , Filogenia , Animales , Biodiversidad , Fósiles
11.
J Proteome Res ; 15(9): 3284-97, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27427999

RESUMEN

This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.


Asunto(s)
Octopodiformes/química , Proteómica , Glándulas Salivales/química , Transcriptoma , Animales , Análisis por Conglomerados , Toxinas Marinas/análisis , Serina Proteasas/análisis , Especificidad de la Especie , Ponzoñas/enzimología
12.
Mol Phylogenet Evol ; 95: 161-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26654959

RESUMEN

Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , NADH Deshidrogenasa/genética , Salmonidae/genética , Selección Genética , Animales , Ecología , Genes Mitocondriales , Flujo Genético , Tasa de Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Salmonidae/clasificación
13.
Proteomics ; 15(23-24): 4021-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26351202

RESUMEN

The marine mussel innate immunity provides protection to pathogen invasion and inflammation. In this regard, the mussel hemolymph takes a main role in the animal innate response. Despite the importance of this body fluid in determining the physiological condition of the animal, little is known about the molecular mechanisms underlying the cellular and humoral responses. In this work, we have applied a MS (nano-LC-MS/MS) strategy integrating genomic and transcriptomic data with the aim to: (i) identify the main protein functional groups that characterize hemolymph and (ii) to map the elements of innate immunity in the marine mussel Mytilus edulis hemolymph proteome. After sample analysis and first protein identification based on MS/MS data comparison, proteins with unknown functions were annotated with blast using public database (nrNCBI) information. Overall 595 hemolymph proteins were identified with high confidence and annotated. These proteins encompass primary cellular metabolic processes: energy production and metabolism of biomolecules, as well as processes related to oxidative stress defence, xenobiotic detoxification, drug metabolism, and immune response. A group of proteins was identified with putative immune effector, receptor, and signaling functions in M. edulis. Data are available via ProteomeXchange with identifier PXD001951 (http://proteomecentral.proteomexchange.org/dataset/PXD001951).


Asunto(s)
Hemolinfa/metabolismo , Mytilus edulis/metabolismo , Proteoma/metabolismo , Animales , Inmunidad Innata/fisiología , Espectrometría de Masas en Tándem
14.
BMC Evol Biol ; 15: 124, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123414

RESUMEN

BACKGROUND: Hemostasis is a defense mechanism that enhances an organism's survival by minimizing blood loss upon vascular injury. In vertebrates, hemostasis has been evolving with the cardio-vascular and hemodynamic systems over the last 450 million years. Birds and mammals have very similar vascular and hemodynamic systems, thus the mechanism that blocks ruptures in the vasculature is expected to be the same. However, the speed of the process varies across vertebrates, and is particularly slow for birds. Understanding the differences in the hemostasis pathway between birds and mammals, and placing them in perspective to other vertebrates may provide clues to the genetic contribution to variation in blood clotting phenotype in vertebrates. We compiled genomic data corresponding to key elements involved in hemostasis across vertebrates to investigate its genetic basis and understand how it affects fitness. RESULTS: We found that: i) fewer genes are involved in hemostasis in birds compared to mammals; and ii) the largest differences concern platelet membrane receptors and components from the kallikrein-kinin system. We propose that lack of the cytoplasmic domain of the GPIb receptor subunit alpha could be a strong contributor to the prolonged bleeding phenotype in birds. Combined analysis of laboratory assessments of avian hemostasis with the first avian phylogeny based on genomic-scale data revealed that differences in hemostasis within birds are not explained by phylogenetic relationships, but more so by genetic variation underlying components of the hemostatic process, suggestive of natural selection. CONCLUSIONS: This work adds to our understanding of the evolution of hemostasis in vertebrates. The overlap with the inflammation, complement and renin-angiotensin (blood pressure regulation) pathways is a potential driver of rapid molecular evolution in the hemostasis network. Comparisons between avian species and mammals allowed us to hypothesize that the observed mammalian innovations might have contributed to the diversification of mammals that give birth to live young.


Asunto(s)
Evolución Biológica , Variación Genética , Hemostasis , Vertebrados/clasificación , Vertebrados/genética , Animales , Aves/clasificación , Aves/genética , Aves/fisiología , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/fisiología , Evolución Molecular , Filogenia , Selección Genética
15.
Genes (Basel) ; 15(2)2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38397160

RESUMEN

The European sardine (Sardina pilchardus, Walbaum 1792) is indisputably a commercially important species. Previous studies using uneven sampling or a limited number of makers have presented sometimes conflicting evidence of the genetic structure of S. pilchardus populations. Here, we show that whole genome data from 108 individuals from 16 sampling areas across 5000 km of the species' distribution range (from the Eastern Mediterranean to the archipelago of Azores) support at least three genetic clusters. One includes individuals from Azores and Madeira, with evidence of substructure separating these two archipelagos in the Atlantic. Another cluster broadly corresponds to the center of the distribution, including the sampling sites around Iberia, separated by the Almeria-Oran front from the third cluster that includes all of the Mediterranean samples, except those from the Alboran Sea. Individuals from the Canary Islands appear to belong to the Mediterranean cluster. This suggests at least two important geographical barriers to gene flow, even though these do not seem complete, with many individuals from around Iberia and the Mediterranean showing some patterns compatible with admixture with other genetic clusters. Genomic regions corresponding to the top outliers of genetic differentiation are located in areas of low recombination indicative that genetic architecture also has a role in shaping population structure. These regions include genes related to otolith formation, a calcium carbonate structure in the inner ear previously used to distinguish S. pilchardus populations. Our results provide a baseline for further characterization of physical and genetic barriers that divide European sardine populations, and information for transnational stock management of this highly exploited species towards sustainable fisheries.


Asunto(s)
Peces , Metagenómica , Humanos , Animales , Peces/genética , Portugal , Genoma/genética , España
16.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609362

RESUMEN

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Asunto(s)
Antílopes , Animales , Antílopes/genética , Ecosistema , África Oriental , África Austral , Efectos Antropogénicos
17.
Genomics ; 99(2): 81-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22193333

RESUMEN

Retinoid X receptors (RXR) are transcription factors with important roles in development, reproduction, homeostasis, and cell differentiation. Different types of vertebrate RXRs (α (RXRA), ß (RXRB) and γ (RXRG)) have arisen from multiple duplication events. The adaptive evolution mechanism that has preserved duplicate RXR paralogs, as well as their role in development and adaptation, is thus far unknown. In this work, we have investigated different aspects of vertebrate RXR evolution. Codon based tests of positive selection identified that RXR was under significant positive selection immediately after the whole genome duplications in vertebrates. Amino acid based rate shift analysis also revealed significant rate shifts immediately after the whole genome duplications and functional divergence between all the pairs of RXRs. However, the extant RXR genes are highly conserved, particularly the helix involved in dimerization and the DNA-binding domain, but positively selected sites can nevertheless be found in domains for RXR regulation.


Asunto(s)
Evolución Molecular , Peces/genética , Receptores X Retinoide/genética , Adaptación Biológica/genética , Animales , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Funciones de Verosimilitud , Ratones/genética , Modelos Genéticos , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Selección Genética , Sintenía , Vertebrados
18.
iScience ; 26(7): 107196, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485357

RESUMEN

The Maghreb is a key region for understanding the dynamics of cattle dispersal and admixture with local aurochs following their earliest domestication in the Fertile Crescent more than 10,000 years ago. Here, we present data on autosomal genomes and mitogenomes obtained for four archaeological specimens of Iron Age (∼2,800 cal BP-2,000 cal BP) domestic cattle from the Eastern Maghreb, i.e. Althiburos (El Kef, Tunisia). D-loop sequences were obtained for an additional eight cattle specimens from this site. Maternal lineages were assigned to the elusive R and ubiquitous African-T1 haplogroups found in two and ten Althiburos specimens, respectively. Our results can be explained by post-domestication hybridization of Althiburos cattle with local aurochs. However, we cannot rule out an independent domestication in North Africa considering the shared ancestry of Althiburos cattle with the pre-domestic Moroccan aurochs and present-day African taurine cattle.

19.
GigaByte ; 2022: gigabyte40, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824513

RESUMEN

The Atlantic chub mackerel, Scomber colias (Gmelin, 1789), is a medium-sized pelagic fish with substantial importance in the fisheries of the Atlantic Ocean and the Mediterranean Sea. Over the past decade, this species has gained special relevance, being one of the main targets of pelagic fisheries in the NE Atlantic. Here, we sequenced and annotated the first high-quality draft genome assembly of S. colias, produced with PacBio HiFi long reads and Illumina paired-end short reads. The estimated genome size is 814 Mbp, distributed into 2,028 scaffolds and 2,093 contigs with an N50 length of 4.19 and 3.34 Mbp, respectively. We annotated 27,675 protein-coding genes and the BUSCO analyses indicated high completeness, with 97.3% of the single-copy orthologs in the Actinopterygii library profile. The present genome assembly represents a valuable resource to address the biology and management of this relevant fishery. Finally, this genome assembly ranks fourth in high-quality genome assemblies within the order Scombriformes and first in the genus Scomber.

20.
Biol Lett ; 7(1): 116-8, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20810427

RESUMEN

Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change.


Asunto(s)
ADN Mitocondrial/genética , Regulación de la Expresión Génica/fisiología , Genoma , Orca/genética , Animales , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA