Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Physiol ; 14: 1098867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492644

RESUMEN

Introduction and aims: During an Endovascular Aneurysm Repair (EVAR) procedure a stiff guidewire is inserted from the iliac arteries. This induces significant deformations on the vasculature, thus, affecting the pre-operative planning, and the accuracy of image fusion. The aim of the present work is to predict the guidewire induced deformations using a finite element approach validated through experiments with patient-specific additive manufactured models. The numerical approach herein developed could improve the pre-operative planning and the intra-operative navigation. Material and methods: The physical models used for the experiments in the hybrid operating room, were manufactured from the segmentations of pre-operative Computed Tomography (CT) angiographies. The finite element analyses (FEA) were performed with LS-DYNA Explicit. The material properties used in finite element analyses were obtained by uniaxial tensile tests. The experimental deformed configurations of the aorta were compared to those obtained from FEA. Three models, obtained from Computed Tomography acquisitions, were investigated in the present work: A) without intraluminal thrombus (ILT), B) with ILT, C) with ILT and calcifications. Results and discussion: A good agreement was found between the experimental and the computational studies. The average error between the final in vitro vs. in silico aortic configurations, i.e., when the guidewire is fully inserted, are equal to 1.17, 1.22 and 1.40 mm, respectively, for Models A, B and C. The increasing trend in values of deformations from Model A to Model C was noticed both experimentally and numerically. The presented validated computational approach in combination with a tracking technology of the endovascular devices may be used to obtain the intra-operative configuration of the vessels and devices prior to the procedure, thus limiting the radiation exposure and the contrast agent dose.

2.
Comput Biol Med ; 146: 105358, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35751181

RESUMEN

In this study we have compared two modalities for flow quantification from measurement data; ultrasound (US) and shadow particle image velocimetry (PIV), and a flow simulation model using computational fluid dynamics (CFD). For the comparison we have used an idealized Quasi-2D phantom of the human left ventricular outflow tract (LVOT). The PIV data will serve as a reference for the true flow field in our setup. Furthermore, the US vector flow imaging (VFI) data has been post processed with model-based regularization developed to both smooth noise and sharpen physical flow features. The US VFI flow reconstruction results in an underestimation of the flow velocity magnitude compared to PIV and CFD. The CFD results coincide very well with the PIV flow field maximum velocities and curl intensity, as well as with the detailed vortex structure, however, this correspondence is subject to exact boundary conditions.


Asunto(s)
Hidrodinámica , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Simulación por Computador , Humanos , Reología/métodos
3.
Comput Biol Med ; 109: 91-100, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31054389

RESUMEN

When using Computational Fluid Dynamics to simulate ventricular blood flow in the heart, it has been common practice to neglect the effect of the sub-valvular apparatus and the trabeculae on the flow conditions. In this study, we analyze the effect of neglecting the chordae tendineae on the fluid flow and pressure drop. To test the assumption we use a previously developed dynamic 3D model of the left ventricle, aorta and valves that is based on 3D echocardiographic recordings. To this model we add the chordae tendineae as a sub-grid model. The previously developed 3D model for the left ventricle during systole is based on real-time three-dimensional echocardiography (RT3DE) recordings of a 30 years old female volunteer. The segmented ventricular wall does not include details of the aorta and the mitral valve, so these were reconstructed. The subgrid model for the flow across the chordae tendineae is based on the Actuator Line Method, which means that they are represented by drag coefficients. The analysis shows that the effect of the chordae tendineae on the pressure drop and work efficiency of the normal heart during systole is minor, and it seems that for simulating ventricular fluid flow and pressure drop during systole, one can follow the current practice and ignore the chordae. However, there can be local effects such as small vortices behind the chordae. Whether such effects are important for a particular application must be evaluated for the given case.


Asunto(s)
Cuerdas Tendinosas , Ecocardiografía Tridimensional , Imagenología Tridimensional , Modelos Cardiovasculares , Sístole , Adulto , Velocidad del Flujo Sanguíneo , Cuerdas Tendinosas/diagnóstico por imagen , Cuerdas Tendinosas/fisiopatología , Femenino , Humanos
4.
Comput Methods Biomech Biomed Engin ; 15(12): 1281-312, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22375939

RESUMEN

The numerical simulation of Bileaflet Mechanical Heart Valves (BMHVs) has gained strong interest in the last years, as a design and optimisation tool. In this paper, a strong coupling algorithm for the partitioned fluid-structure interaction simulation of a BMHV is presented. The convergence of the coupling iterations between the flow solver and the leaflet motion solver is accelerated by using the Jacobian with the derivatives of the pressure and viscous moments acting on the leaflets with respect to the leaflet accelerations. This Jacobian is numerically calculated from the coupling iterations. An error analysis is done to derive a criterion for the selection of useable coupling iterations. The algorithm is successfully tested for two 3D cases of a BMHV and a comparison is made with existing coupling schemes. It is observed that the developed coupling scheme outperforms these existing schemes in needed coupling iterations per time step and CPU time.


Asunto(s)
Prótesis Valvulares Cardíacas , Modelos Cardiovasculares , Algoritmos , Válvula Aórtica/anatomía & histología , Válvula Aórtica/fisiología , Fenómenos Biomecánicos/fisiología , Simulación por Computador , Prótesis Valvulares Cardíacas/estadística & datos numéricos , Hemorreología/fisiología , Humanos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA