Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Respir Res ; 23(1): 292, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309681

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder, mainly characterized by the development of renal cysts, as well as various extrarenal manifestations. Previous studies have shown that ADPKD is related to bronchiectasis, while its pathogenic mechanism is unclear. In previous studies, we have generated the PKD1+/- pigs to simulate the progression of cyst formation and physiological alterations similar to those seen in ADPKD patients. METHODS: Phenotypic changes to airway epithelial cell and mesenchymal cell in PKD1+/- pigs were assessed by histological analysis. The molecular mechanisms driving these processes were investigated by using PKD1+/- pig lungs, human mesenchymal cells, and generating PKD1 deficient human epithelial cells. RESULTS: We identified bronchiectasis in PKD1+/- pigs, which is consistent with the clinical symptoms in ADPKD patients. The deficiency of PKD1 suppressed E-cadherin expression in the airway epithelial barrier, which aggravated invasion and leaded to a perpetuated inflammatory response. During this process, extracellular matrix (ECM) components were altered, which contributed to airway smooth muscle cell phenotype switch from a contractile phenotype to a proliferative phenotype. The effects on smooth muscle cells resulted in airway remodeling and establishment of bronchiectasis. CONCLUSION: To our knowledge, the PKD1+/- pig provides the first model recapitulating the pathogenesis of bronchiectasis in ADPKD. The role of PKD1 in airway epithelial suggests a potential target for development of new strategies for the diagnosis and treatment of bronchiectasis.


Asunto(s)
Bronquiectasia , Riñón Poliquístico Autosómico Dominante , Humanos , Porcinos , Animales , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Bronquiectasia/genética , Células Epiteliales/metabolismo , Pulmón/metabolismo , Mutación
3.
J Agric Food Chem ; 72(28): 15755-15764, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954802

RESUMEN

Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (kr + kq) of squalene was 3.8 × 107 M-1 s-1, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by ß-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Calor , Oxidación-Reducción , Oxígeno Singlete , Escualeno , Escualeno/química , Oxígeno Singlete/química , Cinética , Antioxidantes/química , Aceites de Plantas/química , Estructura Molecular
4.
Front Cell Dev Biol ; 10: 880206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676931

RESUMEN

Epithelial-mesenchymal interaction is required for normal growth, morphogenetic patterning, and cellular differentiation in developing lungs. Various signaling pathways have been defined in establishing the patterning of this branched organ. The phosphoinositide-3-kinase (PI3K) signaling plays an important role in disease pathogenesis but remains largely uncharacterized in embryonic development. In this study, we activated a specific catalytic subunit of PI3K catalytic enzymes, Class IA p110α (p110α), in the embryonic lung mesenchyme using the Dermo1-Cre mouse. Activation of p110α promoted branching morphogenesis and blocked club cell differentiation in both proximal and distal airways. Mechanistically, the LIM homeodomain gene Islet-1 (Isl1), fibroblast growth factor 10 (Fgf10), and SRY (sex-determining region Y)-box9 (Sox9) were found to be downstream targets of p110α. The significantly increased expressions of Isl1, Fgf10, and Sox9 resulted in the stimulation of branching in mutant lungs. Activation of p110α-mediated signaling also increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (Pten) and hairy/enhancer of split 1 (Hes1), which in turn blocked club cell differentiation. Thus, the signaling pathway by which PI3K/p110α-regulated epithelial-mesenchymal interactions may entail Isl1-Fgf10-Sox9 and Pten-Hes1 networks, which consequently regulate branching morphogenesis and club cell differentiation, respectively.

5.
Cell Death Dis ; 12(12): 1086, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34789718

RESUMEN

Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell-cell and cell-environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Células A549 , Adenocarcinoma del Pulmón/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos A , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Transducción de Señal , Transfección
6.
Gene ; 798: 145792, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34175399

RESUMEN

BACKGROUND: Apoptosis is a form of cell death that plays a critical role in the maintenance of tissue homeostasis involving the development and elimination of unwanted cells. Dysregulation of apoptosis appears to be associated in the pathogenesis of many human diseases. Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenetic disease and is mainly caused by mutations in PKD1. Previous studies proved that increased cell death occurred in ADPKD patients and animal models. However, the role of apoptosis in kidney cystogenesis is not clear. METHODS: In current study, due to the high similarities between human and pig, PKD1-deficient (PKD1+/-) pigs and PKD1-knockdown (PKD1KD) pig kidney epithelial cells were used to investigate the mechanisms of apoptosis in driving cystogenesis. RESULTS: In PKD1+/- pigs, increased intrinsic and extrinsic apoptosis were found at ages of 1 month and 3 months, whereas the autophagy and pyroptosis were not altered. Meanwhile, the intrinsic apoptosis was activated along with untouched extrinsic apoptosis in PKD1KD pig kidney cells. Thus, the intrinsic apoptosis played important roles in cystogenesis. CONCLUSIONS: This work provides detail analysis of the roles of different cell death types during cystogenesis in ADPKD pig model. The results suggested a potential new strategy for the diagnosis and treatment of ADPKD by targeting intrinsic apoptosis.


Asunto(s)
Apoptosis , Riñón Poliquístico Autosómico Dominante/etiología , Canales Catiónicos TRPP/deficiencia , Animales , Recuento de Células , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Macrófagos , Riñón Poliquístico Autosómico Dominante/genética , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo
7.
Stem Cell Res Ther ; 10(1): 366, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791401

RESUMEN

BACKGROUND: The airways of mammalian lung are lined with highly specialized cell types that are the target of airborne toxicants and injury. Several epithelial cell types and bone marrow-derived mesenchymal stem cells have been identified to serve as stem cells during injury repair. However, the contributions of endogenous mesenchymal cells to recruitment, expansion or differentiation of stem cells, and repair and reestablishment of the normal composition of airway epithelium following injury have not been addressed. METHODS: The role of mouse pulmonary mesenchymal cells was investigated by lineage tracing using Dermo1-Cre; ROSAmTmG mice. In experimental models of lung injury by lipopolysaccharide and naphthalene, GFP-labeled Dermo1+ mesenchymal cells were traced during injury repair. In vitro lung explant culture treated with or without lipopolysaccharide was also used to verify in vivo data. RESULTS: During injury repair, a subgroup of GFP-labeled Dermo1+ mesenchymal cells were found to contribute to normal repair of the airway epithelium and differentiated into Club cells, ciliated cells, and goblet cells. In Club cell-specific naphthalene injury model, the process of Dermo1+ stem cell regenerating epithelial cells was dissected. The Dermo1+ stem cells was migrated into the airway epithelium layer sooner after injury, and sequentially differentiated transitionally to epithelial stem cells, such as neuroendocrine cells, and finally to newly differentiated Club cells, ciliated cells, and goblet cells in injury repair. CONCLUSION: In this study, a population of Dermo1+ mesenchymal stem cell was identified to serve as stem cells in airway epithelial cell regeneration during injury repair. The Dermo1+ mesenchymal stem cell differentiated into epithelial stem cells before reestablishing various epithelial cells. These findings have implications for understanding the regulation of lung repair and the potential for usage of mesenchymal stem cells in therapeutic strategies for lung diseases.


Asunto(s)
Epitelio/fisiología , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Regeneración , Enfermedad Aguda , Animales , Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Naftalenos/toxicidad , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA