Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1038-1041, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428386

RESUMEN

Genomic approaches have the potential to play a pivotal role in conservation, both to detect threats to species and populations and to restore biodiversity through actions. We here separate these approaches into two subdisciplines, vulnerability and restoration genomics, and discuss current applications, outstanding questions, and future potential.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Genómica
2.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942016

RESUMEN

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Asunto(s)
Extinción Biológica , Genoma , Mamuts , Mutación , Animales , Mamuts/genética , Genoma/genética , Siberia , Filogenia , Evolución Molecular , Factores de Tiempo
3.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433011

RESUMEN

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Asunto(s)
Evolución Molecular , Genoma , Perisodáctilos/genética , Animales , Demografía , Flujo Génico , Variación Genética , Geografía , Heterocigoto , Homocigoto , Especificidad del Huésped , Cadenas de Markov , Mutación/genética , Filogenia , Especificidad de la Especie , Factores de Tiempo
4.
Cell ; 181(6): 1200-1201, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497501

RESUMEN

The unrelenting development of ancient DNA methods now allows researchers to obtain archaeogenetic data from increasingly diverse sources. In a new study in this issue of Cell, researchers apply the latest DNA technologies to unravel the mysteries of the Dead Sea Scrolls, one of the world's most famous and influential sets of ancient parchments.


Asunto(s)
ADN Antiguo , Código Genético
5.
Cell ; 157(4): 785-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813606

RESUMEN

Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.


Asunto(s)
Evolución Biológica , Ursidae/clasificación , Ursidae/genética , Adaptación Fisiológica , Tejido Adiposo/metabolismo , Animales , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Regiones Árticas , Ácidos Grasos/metabolismo , Flujo Génico , Genética de Población , Genoma , Ursidae/fisiología
6.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
7.
Genome Res ; 33(8): 1299-1316, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463752

RESUMEN

Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.


Asunto(s)
Genómica , Marsupiales , Animales , Genómica/métodos , Filogenia , Extinción Biológica , Paleontología , Marsupiales/genética , ARN/genética
8.
Bioinformatics ; 40(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960861

RESUMEN

MOTIVATION: The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome on mismatch rates across read lengths. RESULTS: For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from BAM-files and informing on reference bias, read length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimized mapping parameters for each read length will be a key step in alleviating reference bias and spurious mappings. AVAILABILITY AND IMPLEMENTATION: AMBER is available for noncommercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts used to generate and analyse simulated datasets are available on Github (https://github.com/sdolenz/refbias_scripts).


Asunto(s)
ADN Antiguo , Análisis de Secuencia de ADN , ADN Antiguo/análisis , Humanos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Alineación de Secuencia/métodos , Biología Computacional/métodos , Algoritmos
9.
Nature ; 574(7776): 103-107, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31511700

RESUMEN

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Asunto(s)
ADN Antiguo/análisis , Esmalte Dental/metabolismo , Fósiles , Perisodáctilos/clasificación , Perisodáctilos/genética , Filogenia , Proteoma/genética , Proteómica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Historia Antigua , Humanos , Masculino , Perisodáctilos/metabolismo , Fosforilación/genética , Proteoma/análisis
10.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561011

RESUMEN

The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.


Asunto(s)
Evolución Biológica , Perisodáctilos , Animales , África Oriental , África del Sur del Sahara , Perisodáctilos/genética , Especies en Peligro de Extinción
11.
Mol Ecol ; 33(14): e17429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847234

RESUMEN

Hybridization can result in the transfer of adaptive genetic material from one species to another, known as adaptive introgression. Bottlenecked (and hence genetically depleted) species are expected to be particularly receptive to adaptive introgression, since introgression can introduce new or previously lost adaptive genetic variation. The Alpine ibex (Capra ibex), which recently recovered from near extinction, is known to hybridize with the domestic goat (Capra aegagrus hircus), and signals of introgression previously found at the major histocompatibility complex were suggested to potentially be adaptive. Here, we combine two ancient whole genomes of Alpine ibex with 29 modern Alpine ibex genomes and 31 genomes representing six related Capra species to investigate the genome-wide patterns of introgression and confirm the potential relevance of immune loci. We identified low rates of admixture in modern Alpine ibex through various F statistics and screening for putative introgressed tracts. Further results based on demographic modelling were consistent with introgression to have occurred during the last 300 years, coinciding with the known species bottleneck, and that in each generation, 1-2 out of 100 Alpine ibex had a domestic goat parent. The putatively introgressed haplotypes were enriched at immune-related genes, where the adaptive value of alternative alleles may give individuals with otherwise depleted genetic diversity a selective advantage. While interbreeding with domestic species is a prevalent issue in species conservation, in this specific case, it resulted in putative adaptive introgression. Our findings highlight the complex interplay between hybridization, adaptive evolution, and the potential risks and benefits associated with anthropogenic influences on wild species.


Asunto(s)
Introgresión Genética , Cabras , Haplotipos , Hibridación Genética , Animales , Cabras/genética , Cabras/inmunología , Haplotipos/genética , Genética de Población , Variación Genética
12.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971141

RESUMEN

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Asunto(s)
Metagenómica , Resiliencia Psicológica , Humanos , Animales , Recién Nacido , Evolución Biológica , Genómica , Rumiantes/genética , Variación Genética/genética
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544854

RESUMEN

Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.


Asunto(s)
Distribución Animal , Evolución Biológica , Perros/genética , Flujo Génico , Genética de Población , Genoma , Migración Humana , Animales , Arqueología , Humanos , Siberia
14.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972424

RESUMEN

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Asunto(s)
Evolución Biológica , Ecología/métodos , Hominidae/microbiología , Metagenoma/genética , Microbiota/genética , Boca/microbiología , África , Animales , Bacterias/clasificación , Bacterias/genética , Biopelículas , Placa Dental/microbiología , Geografía , Gorilla gorilla/microbiología , Hominidae/clasificación , Humanos , Pan troglodytes/microbiología , Filogenia
15.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36322483

RESUMEN

The blue antelope (Hippotragus leucophaeus) is the only large African mammal species to have become extinct in historical times, yet no nuclear genomic information is available for this species. A recent study showed that many alleged blue antelope museum specimens are either roan (Hippotragus equinus) or sable (Hippotragus niger) antelopes, further reducing the possibilities for obtaining genomic information for this extinct species. While the blue antelope has a rich fossil record from South Africa, climatic conditions in the region are generally unfavorable to the preservation of ancient DNA. Nevertheless, we recovered two blue antelope draft genomes, one at 3.4× mean coverage from a historical specimen (∼200 years old) and one at 2.1× mean coverage from a fossil specimen dating to 9,800-9,300 cal years BP, making it currently the oldest paleogenome from Africa. Phylogenomic analyses show that blue and sable antelope are sister species, confirming previous mitogenomic results, and demonstrate ancient gene flow from roan into blue antelope. We show that blue antelope genomic diversity was much lower than in roan and sable antelope, indicative of a low population size since at least the early Holocene. This supports observations from the fossil record documenting major decreases in the abundance of blue antelope after the Pleistocene-Holocene transition. Finally, the persistence of this species throughout the Holocene despite low population size suggests that colonial-era human impact was likely the decisive factor in the blue antelope's extinction.


Asunto(s)
Antílopes , Mustelidae , Animales , Humanos , Antílopes/genética , Evolución Biológica , Filogenia , Genoma , Mustelidae/genética
16.
Oecologia ; 202(2): 261-273, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37261510

RESUMEN

Both abiotic and biotic conditions may be important for biodiversity. However, their relative importance may vary among different diversity dimensions as well as across spatial scales. Spiders (Araneae) offer an ecologically relevant system for evaluating variation in the relative strength abiotic and biotic biodiversity regulation. We quantified the relative importance of abiotic and biotic conditions for three diversity dimensions of spider communities quantified across two spatial scales. Spiders were surveyed along elevation gradients in northern Sweden. We focused our analysis on geomorphological and climatic conditions as well as vegetation characteristics, and quantified the relative importance of these conditions for the taxonomic, phylogenetic, and functional diversity of spider communities sampled across one intermediate (500 m) and one local (25 m) scale. There were stronger relationships among diversity dimensions at the local than the intermediate scale. There were also variation in the relative influence of abiotic and biotic conditions among diversity dimensions, but this variation was not consistent across spatial scales. Across both spatial scales, vegetation was related to all diversity dimensions whereas climate was important for phylogenetic and functional diversity. Our study does not fully support stronger abiotic regulation at coarser scales, and conversely stronger abiotic regulation at more local scales. Instead, our results indicate that community assembly is shaped by interactions between abiotic constrains in species distributions and biotic conditions, and that such interactions may be both scale and context dependent.


Asunto(s)
Biodiversidad , Ecosistema , Arañas , Filogenia , Suecia
17.
BMC Bioinformatics ; 23(1): 228, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698034

RESUMEN

BACKGROUND: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. RESULTS: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub ( https://github.com/NBISweden/GenErode ). CONCLUSIONS: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.


Asunto(s)
Biología Computacional , Genoma , Animales , Especies en Peligro de Extinción , Genómica , Reproducibilidad de los Resultados , Programas Informáticos
18.
BMC Genomics ; 23(1): 747, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357860

RESUMEN

BACKGROUND: Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.


Asunto(s)
Flujo Genético , Endogamia , Humanos , Selección Genética , Alelos , Genómica , Variación Genética
19.
Mol Biol Evol ; 38(10): 4388-4402, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34157721

RESUMEN

Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat coloration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage color moults across regions with varying winter snow. Whole-genome sequence data were obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris coloration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200-kb genomic region to coloration morph, which was validated by genotyping museum specimens from intermorph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change cosegregating with coloration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favored winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter color variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.


Asunto(s)
Mustelidae , Pigmentación , Animales , Mamíferos , Mustelidae/fisiología , Fenotipo , Pigmentación/genética , Estaciones del Año
20.
Mol Biol Evol ; 38(9): 3884-3897, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426844

RESUMEN

During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Flujo Génico , Variación Genética , Hyaenidae/genética , Animales , Conducta Alimentaria , Genoma , Masculino , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA