Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102726, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410438

RESUMEN

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.


Asunto(s)
Proteínas , Proteómica , Biotinilación , Poro Nuclear , Proteínas/química , Proteómica/métodos , Estreptavidina/química
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396700

RESUMEN

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Asunto(s)
Adipogénesis , ARN Largo no Codificante , Humanos , Adipogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteogénesis/genética , Diferenciación Celular/genética , Células Madre/metabolismo , Polirribosomas/metabolismo
3.
Virol J ; 18(1): 222, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789293

RESUMEN

BACKGROUND: We report a genomic surveillance of SARS-CoV-2 lineages circulating in Paraná, southern Brazil, from March 2020 to April 2021. Our analysis, based on 333 genomes, revealed that the first variants detected in the state of Paraná in March 2020 were the B.1.1.33 and B.1.1.28 variants. The variants B.1.1.28 and B.1.1.33 were predominant throughout 2020 until the introduction of the variant P.2 in August 2020 and a variant of concern (VOC), Gamma (P.1), in January 2021. The VOC Gamma, a ramification of the B.1.1.28 lineage first detected in Manaus (northern Brazil), has grown rapidly since December 2020 and was thought to be responsible for the deadly second wave of COVID-19 throughout Brazil. METHODS: The 333 genomic sequences of SARS-CoV-2 from March 2020 to April 2021 were generated as part of the genomic surveillance carried out by Fiocruz in Brazil Genomahcov Fiocruz. SARS-CoV-2 sequencing was performed using representative samples from all geographic areas of Paraná. Phylogenetic analyses were performed using the 333 genomes also included other SARS-CoV-2 genomes from the state of Paraná and other states in Brazil that were deposited in the GISAID. In addition, the time-scaled phylogenetic tree was constructed with up to 3 random sequences of the Gamma variant from each state in Brazil in each month of 2021. In this analysis we also added the sequences identified as the B.1.1.28 lineage of the Amazonas state and and the Gamma-like-II (P.1-like-II) lineage identified in different regions of Brazil. RESULTS: Phylogenetic analyses of the SARS-CoV-2 genomes that were previously classified as the VOC Gamma lineage by WHO/PANGO showed that some genomes from February to April 2021 branched in a monophyletic clade and that these samples grouped together with genomes recently described with the lineage Gamma-like-II. Additionally, a new mutation (E661D) in the spike (S) protein has been identified in nearly 10% of the genomes classified as the VOC Gamma from Paraná in March and April 2021.Finally, we analyzed the correlation between the lineage and the Gamma variant frequency, age group (patients younger or older than 60 years old) and the clinical data of 86 cases from the state of Paraná. CONCLUSIONS: Our results provided a reliable picture of the evolution of the SARS-CoV-2 pandemic in the state of Paraná characterized by the dominance of the Gamma strain, as well as a high frequencies of the Gamma-like-II lineage and the S:E661D mutation. Epidemiological and genomic surveillance efforts should be continued to unveil the biological relevance of the novel mutations detected in the VOC Gamma in Paraná.


Asunto(s)
COVID-19/virología , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Brotes de Enfermedades , Humanos , Persona de Mediana Edad , Mutación , Filogenia , Vigilancia de la Población , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuenciación Completa del Genoma
4.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572750

RESUMEN

Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/citología , Transducción de Señal , Diferenciación Celular , Línea Celular , Metabolismo Energético , Células Madre Embrionarias Humanas/metabolismo , Humanos , Metabolismo de los Lípidos , Miocitos Cardíacos/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
5.
Mol Cell Biochem ; 468(1-2): 35-45, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32125578

RESUMEN

Long non-coding RNAs (lncRNAs) have been found to be involved in many biological processes, including the regulation of cell differentiation, but a complete characterization of lncRNA is still lacking. Additionally, there is evidence that lncRNAs interact with ribosomes, raising questions about their functions in cells. Here, we used a developmentally staged protocol to induce cardiogenic commitment of hESCs and then investigated the differential association of lncRNAs with polysomes. Our results identified lncRNAs in both the ribosome-free and polysome-bound fractions during cardiogenesis and showed a very well-defined temporal lncRNA association with polysomes. Clustering of lncRNAs was performed according to the gene expression patterns during the five timepoints analyzed. In addition, differential lncRNA recruitment to polysomes was observed when comparing the differentially expressed lncRNAs in the ribosome-free and polysome-bound fractions or when calculating the polysome-bound vs ribosome-free ratio. The association of lncRNAs with polysomes could represent an additional cytoplasmic role of lncRNAs, e.g., in translational regulation of mRNA expression.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos/genética , Miocitos Cardíacos/metabolismo , Polirribosomas/metabolismo , ARN Largo no Codificante/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Familia de Multigenes , Organogénesis/genética , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , RNA-Seq
6.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283676

RESUMEN

DDX6 helicase is an RNA-binding protein involved in different aspects of gene expression regulation. The roles played by DDX6 depend on the complexes associated with it. Here, for the first time, we characterize the protein complexes associated with DDX6 in human adipose tissue-derived stem cells (hASCs) and analyze the dynamics of this helicase under different conditions of translational activity and differentiation. The results obtained demonstrated that the DDX6 helicase is associated with proteins involved in the control of mRNA localization, translation and metabolism in hASCs. DDX6 complexes may also assemble into more complex structures, such as RNA-dependent granules, the abundance and composition of which change upon inhibited translational activity. This finding supports the supposition that DDX6 is possibly involved in the regulation of the mRNA life cycle in hASCs. Although there was no significant variation in the protein composition of these complexes during early adipogenic or osteogenic induction, there was a change in the distribution pattern of DDX6: the number of DDX6 granules per cell was reduced during adipogenesis and was enhanced during osteogenesis.


Asunto(s)
Adipogénesis , Tejido Adiposo/citología , Proteínas Portadoras/metabolismo , ARN Helicasas DEAD-box/metabolismo , Osteogénesis , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Adipogénesis/genética , Adolescente , Adulto , Proteínas Portadoras/genética , Biología Computacional/métodos , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Osteogénesis/genética , Unión Proteica , Transporte de Proteínas , Proteómica , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
7.
BMC Genomics ; 20(1): 219, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30876407

RESUMEN

BACKGROUND: Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation features are still being defined. There has been an increasing interest in understanding the coordination between transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound RNAs during cardiomyogenesis. RESULTS: We showed that polysome-bound RNAs exhibit the cardiomyogenic commitment gene expression and that mesoderm-to-cardiac progenitor stages are strongly regulated. Additionally, we compared ribosome-free and polysome-bound RNAs and found that the post-transcriptional regulation vastly contributes to cardiac phenotype determination, including RNA recruitment to and dissociation from ribosomes. Moreover, we found that protein synthesis is decreased in cardiomyocytes compared to human embryonic stem-cells (hESCs), possibly due to the down-regulation of translation-related genes. CONCLUSIONS: Our data provided a powerful tool to investigate genes potentially controlled by post-transcriptional mechanisms during the cardiac differentiation of hESC. This work could prospect fundamental tools to develop new therapy and research approaches.


Asunto(s)
Biomarcadores/análisis , Diferenciación Celular , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Organogénesis , Polirribosomas/genética , ARN Mensajero/genética
8.
Regul Toxicol Pharmacol ; 92: 75-82, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29129620

RESUMEN

With the increasing need to develop in vitro assays to replace animal use, human stem cell-derived methods are emerging and showing outstanding contributions to the toxicological screening of substances. Adult human stem cells such as adipose-derived stem cells (ADSC) and periodontal ligament stem cells (PDLSC) were used as cell substrates for a cytotoxicity assay and toxicity prediction using the neutral red uptake (NRU) assay. First, primary cell cultures from three independent donors, from each tissue source, were characterized as mesenchymal stem cells (MSC) by plastic adherence and appropriate immunophenotype for MSC markers (positive for CD90, CD73, and CD105 and negative for CD11b, CD34, CD45, HLADR, and CD19). Furthermore, ADSC and PDLSC were able to differentiate into adipocytes and osteoblasts when maintained under the same culture conditions previously established for the NRU assay. NRU assays for three reference test substances were performed. R2 was higher than 0.85 for all conditions, showing the feasibility to calculate IC50 values. The IC50 values were then used to predict the LD50 of the test substances, which were comparable to previous results and the ICCVAM standard test report. Primary ADSC and PDLSC showed the potential to be considered as additional models for use in cytotoxicity assays.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Bioensayo/métodos , Citotoxinas/toxicidad , Células Madre Mesenquimatosas/efectos de los fármacos , Ligamento Periodontal/efectos de los fármacos , Células Madre/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Células Madre/metabolismo
9.
BMC Genomics ; 16: 443, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26054634

RESUMEN

BACKGROUND: Due to the absence of transcription initiation regulation of protein coding genes transcribed by RNA polymerase II, posttranscriptional regulation is responsible for the majority of gene expression changes in trypanosomatids. Therefore, cataloging the abundance of mRNAs (transcriptome) and the level of their translation (translatome) is a key step to understand control of gene expression in these organisms. RESULTS: Here we assess the extent of regulation of the transcriptome and the translatome in the Chagas disease causing agent, Trypanosoma cruzi, in both the non-infective (epimastigote) and infective (metacyclic trypomastigote) insect's life stages using RNA-seq and ribosome profiling. The observed steady state transcript levels support constitutive transcription and maturation implying the existence of distinctive posttranscriptional regulatory mechanisms controlling gene expression levels at those parasite stages. Meanwhile, the downregulation of a large proportion of the translatome indicates a key role of translation control in differentiation into the infective form. The previously described proteomic data correlate better with the translatomes than with the transcriptomes and translational efficiency analysis shows a wide dynamic range, reinforcing the importance of translatability as a regulatory step. Translation efficiencies for protein families like ribosomal components are diminished while translation of the transialidase virulence factors is upregulated in the quiescent infective metacyclic trypomastigote stage. CONCLUSIONS: A large subset of genes is modulated at the translation level in two different stages of Trypanosoma cruzi life cycle. Translation upregulation of virulence factors and downregulation of ribosomal proteins indicates different degrees of control operating to prepare the parasite for an infective life form. Taking together our results show that translational regulation, in addition to regulation of steady state level of mRNA, is a major factor playing a role during the parasite differentiation.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Ribosomas/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/análisis , ARN Protozoario/análisis , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Regulación hacia Arriba
10.
Regul Toxicol Pharmacol ; 73(3): 992-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26382612

RESUMEN

Human adipose-derived stem cells (ADSC) were evaluated as cell culture model for cytotoxicity assay and toxicity prediction by using the neutral red uptake assay (NRU). In this study, we compared ADSC and the murine cell line BALB/c 3T3 clone A31 to predict the toxicity of 12 reference substances as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods. We predicted the LD50 for RC-rat-only weight and RC-rat-only millimole regressions for both cell culture models. For RC rat-only weight regression, both cells had the same accordance (50%), while for RC rat-only millimole regression, the accordance was 50% for ADSC and 42% for 3T3s. Thus, ADSC have similar capability for GHS class prediction as the 3T3 cell line for the evaluated reference substances. Therefore, ADSCs showed the potential to be considered a novel model for use in evaluating cytotoxicity in drug development and industry as well as for regulatory purposes to reduce or replace the use of laboratory animals with acceptable sensitivity for toxicity prediction in humans. These cells can be used to complete the results from other models, mainly because of its human origin. Moreover, it is less expensive in comparison with other existing models.


Asunto(s)
Tejido Adiposo/citología , Bioensayo , Células Madre/efectos de los fármacos , Pruebas de Toxicidad Aguda/métodos , Animales , Células 3T3 BALB , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Ratones , Reproducibilidad de los Resultados , Medición de Riesgo , Células Madre/patología
11.
BMC Mol Biol ; 15: 12, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24993635

RESUMEN

BACKGROUND: DZIP1 (DAZ-interacting protein 1) has been described as a component of the Hh signaling pathway with a putative regulatory role in ciliogenesis. DZIP1 interacts with DAZ RNA binding proteins in embryonic stem cells and human germ cells suggesting a role in mRNA regulation. RESULTS: We investigated DZIP1 function in HeLa cells and its involvement in ribonucleoprotein complexes. DZIP1 was predominantly located in granules in the cytoplasm. Under oxidative stress conditions, DZIP1 re-localized to stress granules. DZIP appears to be important for the formation of stress granules during the stress response. We used immunoprecipitation assays with antibodies against DZIP1 and microarray hybridization to identify mRNAs associated with DZIP1. The genetic networks formed by the DZIP1-associated mRNAs were involved in cell cycle and gene expression regulation. DZIP1 is involved in the Hedgehog signaling pathway. We used cyclopamine, a specific inhibitor of this pathway, to analyze the expression of DZIP1 and its associated mRNAs. The abundance of DZIP1-associated mRNAs increased with treatment; however, the silencing or overexpression of DZIP1 in HeLa cells had no effect on the accumulation of the associated mRNAs. Polysomal profile analysis by sucrose gradient centrifugation demonstrated the presence of DZIP1 in the polysomal fraction. CONCLUSIONS: Our results suggest that DZIP1 is part of an RNP complex that occupies various subcellular locations. The diversity of the mRNAs associated with DZIP1 suggests that this protein is a component of different RNPs associated with translating polysomes and with RNA granules.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Gránulos Citoplasmáticos/genética , Estrés Oxidativo/genética , Ribonucleoproteínas/genética , Ciclo Celular/genética , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Células HeLa , Proteínas Hedgehog/genética , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/genética
12.
Front Mol Biosci ; 11: 1336336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380430

RESUMEN

Alternative polyadenylation (APA) increases transcript diversity through the generation of isoforms with varying 3' untranslated region (3' UTR) lengths. As the 3' UTR harbors regulatory element target sites, such as miRNAs or RNA-binding proteins, changes in this region can impact post-transcriptional regulation and translation. Moreover, the APA landscape can change based on the cell type, cell state, or condition. Given that APA events can impact protein expression, investigating translational control is crucial for comprehending the overall cellular regulation process. Revisiting data from polysome profiling followed by RNA sequencing, we investigated the cardiomyogenic differentiation of pluripotent stem cells by identifying the transcripts that show dynamic 3' UTR lengthening or shortening, which are being actively recruited to ribosome complexes. Our findings indicate that dynamic 3' UTR lengthening is not exclusively associated with differential expression during cardiomyogenesis but rather with recruitment to polysomes. We confirm that the differentiated state of cardiomyocytes shows a preference for shorter 3' UTR in comparison to the pluripotent stage although preferences vary during the days of the differentiation process. The most distinct regulatory changes are seen in day 4 of differentiation, which is the mesoderm commitment time point of cardiomyogenesis. After identifying the miRNAs that would target specifically the alternative 3' UTR region of the isoforms, we constructed a gene regulatory network for the cardiomyogenesis process, in which genes related to the cell cycle were identified. Altogether, our work sheds light on the regulation and dynamic 3' UTR changes of polysome-recruited transcripts that take place during the cardiomyogenic differentiation of pluripotent stem cells.

13.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920678

RESUMEN

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Asunto(s)
Diferenciación Celular , Corazón , Homeostasis , Miocitos Cardíacos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Corazón/embriología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula/genética , Organogénesis/genética
14.
Biochem Biophys Res Commun ; 436(2): 295-9, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23743203

RESUMEN

Because of their relevant role in the post-transcriptional regulation of the expression of a multitude of genes, RNA-binding proteins (RBPs) need to be accurately regulated in response to environmental signals in terms of quantity, functionality and localization. Transcriptional, post-transcriptional and post-translational steps have all been involved in this tight control. We have previously identified a Trypanosoma cruzi RBP, named TcRBP19, which can barely be detected at the replicative intracellular amastigote stage of the mammalian host. Even though protein coding genes are typically transcribed constitutively in trypanosomes, TcRBP19 protein is undetectable at the epimastigote stage. Here, we show that this protein expression pattern follows the steady-state of its mRNA. Using a T. cruzi reporter gene approach, we could establish a role for the 3' UTR of the tcrbp19 mRNA in transcript down-regulation at the epimastigote stage. In addition, the binding of the TcRBP19 protein to its encoding mRNA was revealed by in vitro pull down followed by qRT-PCR and confirmed by CLIP assays. Furthermore, we found that forced over-expression of TcRBP19 in T. cruzi epimastigotes decreased the stability of the endogenous tcrbp19 mRNA. These results support a negative feedback control of TcRBP19 to help maintain its very low concentration of TcRBP19 in the epimastigote stage. To our knowledge, this is the first RBP reported in trypanosomatids capable of negatively regulating its own mRNA. The mechanism revealed here adds to our limited but growing number of examples of negative mRNA autoregulation in the control of gene expression.


Asunto(s)
Regiones no Traducidas 3'/genética , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética , Trypanosoma cruzi/genética , Secuencia de Bases , Regulación hacia Abajo , Retroalimentación Fisiológica , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Protozoarias/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trypanosoma cruzi/citología , Trypanosoma cruzi/metabolismo
15.
Bioinform Biol Insights ; 17: 11779322231161918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020502

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.

16.
Biochem Biophys Res Commun ; 420(2): 302-7, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22425988

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a neglected disorder that affects millions of people in the Americas. T. cruzi relies mostly upon post-transcriptional regulation to control stage specific gene expression. RNA binding proteins (RBPs) associate with functionally related mRNAs forming ribonucleoprotein complexes that define post-transcriptional operons. The RNA Recognition Motif (RRM) is the most common and ancient family of RBPs. This family of RBPs has been identified in trypanosomatid parasites and only a few of them have been functionally characterized. We describe here the functional characterization of TcRBP40, a T. cruzi specific RBP, and its associated mRNAs. We used a modified version of the recombinant RIP-Chip assay to identify the mRNAs with which it associates and in vivo TAP-tag assays to confirm these results. TcRBP40 binds to an AG-rich sequence in the 3'UTR of the associated mRNAs, which were found to encode mainly putative transmembrane proteins. TcRBP40 is differentially expressed in metacyclogenesis. Surprisingly, in epimastigotes, it is dispersed in the cytoplasm but is concentrated in the reservosomes, a T. cruzi specific organelle, which suggests a putative new function for this parasite organelle.


Asunto(s)
Proteínas Protozoarias/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Trypanosoma cruzi/metabolismo , Secuencia de Bases , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Mem Inst Oswaldo Cruz ; 107(8): 1076-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23295764

RESUMEN

To characterise the trypanosomatid-exclusive RNA-binding protein TcRBP19, we analysed the phenotypic changes caused by its overexpression. Although no evident changes were observed when TcRBP19 was ectopically expressed in epimastigotes, the metacyclogenesis process was affected. Notably, TcRBP19 overexpression also led to a decrease in the number of infected mammalian cells. These findings suggest that TcRBP19 may be involved in the life cycle progression of the Trypanosoma cruzi parasite.


Asunto(s)
Proteínas Protozoarias/fisiología , Proteínas de Unión al ARN/genética , Trypanosoma cruzi/genética , Animales , Regulación de la Expresión Génica , Estadios del Ciclo de Vida , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo
18.
Mem Inst Oswaldo Cruz ; 107(6): 816-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22990974

RESUMEN

Small non-coding RNAs derived from transfer RNAs have been identified as a broadly conserved prokaryotic and eukaryotic response to stress. Their presence coincides with changes in developmental state associated with gene expression regulation. In the epimastigote form of Trypanosoma cruzi, tRNA fragments localize to posterior cytoplasmic granules. In the infective metacyclic form of the parasite, we found tRNA-derived fragments to be abundant and evenly distributed within the cytoplasm. The fragments were not associated with polysomes, suggesting that the tRNA-derived fragments may not be directly involved in translation control in metacyclics.


Asunto(s)
Gránulos Citoplasmáticos/genética , ARN Protozoario/análisis , ARN de Transferencia/análisis , Trypanosoma cruzi/genética , Gránulos Citoplasmáticos/química , ARN Protozoario/genética , ARN de Transferencia/genética
19.
Mem Inst Oswaldo Cruz ; 107(6): 790-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22990970

RESUMEN

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Protozoarias/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Trypanosoma cruzi/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN , Trypanosoma cruzi/crecimiento & desarrollo
20.
J Cachexia Sarcopenia Muscle ; 13(1): 100-113, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850602

RESUMEN

Recent advances in the transcriptomics, translatomics, and proteomics have led us to the exciting new world of functional endogenous microproteins. These microproteins have a small size and are derived from small open reading frames (smORFs) of RNAs previously annotated as non-coding (e.g. lncRNAs and circRNAs) as well as from untranslated regions and canonical mRNAs. The presence of these microproteins reveals a much larger translatable portion of the genome, shifting previously defined dogmas and paradigms. These findings affect our view of organisms as a whole, including skeletal muscle tissue. Emerging evidence demonstrates that several smORF-derived microproteins play crucial roles during muscle development (myogenesis), maintenance, and regeneration, as well as lipid and glucose metabolism and skeletal muscle bioenergetics. These microproteins are also involved in processes including physical activity capacity, cellular stress, and muscular-related diseases (i.e. myopathy, cachexia, atrophy, and muscle wasting). Given the role of these small proteins as important key regulators of several skeletal muscle processes, there are rich prospects for the discovery of new microproteins and possible therapies using synthetic microproteins.


Asunto(s)
Proteínas , Transcriptoma , Músculo Esquelético , Sistemas de Lectura Abierta , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA