Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Langmuir ; 34(41): 12324-12334, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30234996

RESUMEN

A better understanding of the interactions of carbon black and perfluorinated sulfonic acid (PFSA) ionomer helps to improve the effectiveness of polymer electrolyte membrane fuel cells. We present a simple and fast method for quantitative PFSA ionomer analysis based on suspension density measurements. After validation of the reliability of our method by thermogravimetric analysis and isothermal titration calorimetry (ITC), we investigate the adsorption equilibrium of short-side-chain PFSA ionomers of different equivalent weights (EW) and polarities on carbon black. The measured adsorption isotherms exhibit a plateau in the ionomer surface concentration for ionomer equilibrium concentrations ≤2 g/L. In this concentration range, the adsorption isotherms are described by the Langmuir model, whereby the surface concentrations in the plateau region are between 0.041 and 0.070 g/g. The plateau value of the ionomer surface concentration increases with EW and therefore with decreasing number of side chains with terminal sulfonic acid group per ionomer molecule, while the amount of adsorbed sulfonic acid groups remains constant for all investigated ionomers, resulting in similar ζ-potentials and sedimentation stability of the suspensions. The free energies of adsorption Δ G calculated from the association constants of the adsorption isotherms agree well with Δ G values obtained by isothermal titration calorimetry (ITC) and thus validate the adsorption isotherm measurement method. From the values of adsorption enthalpy Δ H ((-7.3 ± 0.8) kJ/mol) and entropy Δ S (ca. 100 J/(mol K)), which were extracted from ITC, we conclude that the ionomer adsorption on carbon black is a spontaneous physisorption process.

2.
Eur Biophys J ; 47(7): 777-787, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29909434

RESUMEN

By combining analytical ultracentrifugation (AUC) in liquid phase and scanning mobility particle sizer (SMPS) in the gas phase, additional information on the particle size and morphology has been obtained for rigid particles. In this paper, we transfer this concept to soft particles, allowing us to analyze the size and molar mass of the short side chain perfluorosulfonic acid ionomer Aquivion® in a dilute aqueous suspension. The determination of the primary size and exact molar mass of this class of polymers is challenging since they are optically transparent and due to the formation of different aggregate structures depending on the concentration and solvent properties. First, validation of AUC and SMPS measurements was carried out using the well-defined biopolymers bovine serum albumin (BSA) and lysozyme (LYZ) to confirm the reliability of the results of the two unique and independent classifying methods. Then, the ionomer Aquivion® was studied using both techniques. From the mean molar mass of 185 ± 14 kDa obtained by AUC, a mean hydrodynamic diameter of 7.6 ± 0.5 nm was calculated. The particle size obtained from SMPS (7.1 nm) agrees very well with the results from AUC showing that the molecule was transferred into the gas phase without significantly changing its structure. In conclusion, the Aquivion® is molecularly dispersed in the used aqueous buffer solution without any aggregate formation in the investigated concentration range (< 2 g l-1).


Asunto(s)
Tamaño de la Partícula , Polímeros/química , Albúmina Sérica Bovina/química , Ultracentrifugación/métodos , Animales , Bovinos , Peso Molecular , Muramidasa/química , Ultracentrifugación/instrumentación
3.
Phys Chem Chem Phys ; 18(1): 466-75, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26616577

RESUMEN

In this work we performed a detailed investigation of the photostability of bottom-up produced carbon nanodots (CDs) prepared from citric acid and urea by solvothermal synthesis. Analytical ultracentrifugation (AUC) reveals that the CDs have a hydrodynamic diameter of <1 nm and a very narrow size distribution. In the community it is widely assumed that CDs are photo-stable. In contrast, we found that CDs exposed to UV-irradiation exhibit noteworthy fluorescence degeneration compared to freshly prepared CDs or CDs stored in the dark, indicating that fluorescence bleaching is caused by a photochemical process. We found that fluorescence intensity decay due to exposure to UV-irradiation is accelerated in the presence of oxygen and identified the surface status of CDs as the decisive factor of fluorescence bleaching of CDs. Based on a discussion on the underlying mechanisms we show how to avoid photobleaching of CDs.

4.
Small ; 11(7): 814-25, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25201557

RESUMEN

In this paper, a method to determine the lateral dimensions of 2D nanosheets directly in suspension by analytical ultracentrifugation (AUC) is shown. The basis for this study is a well-characterized and stable dispersion of graphene oxide (GO) monolayers in water. A methodology is developed to correlate the sedimentation coefficient distribution measured by AUC with the lateral size distribution of the 2D GO nanosheets obtained from atomic force microscopy (AFM). A very high accuracy can be obtained by virtue of counting several thousand sheets, thereby minimizing any coating effects or statistical uncertainties. The AFM statistics are further used to fit the lateral size distribution obtained from the AUC to determine the unknown hydrodynamic sheet thickness or density. It is found that AUC can derive nanosheet diameter distributions with a relative error of the mean sheet diameter of just 0.25% as compared to the AFM analysis for 90 mass% of the particles in the distribution. The standard deviation of the size-dependent error for the total distribution is found to be 3.25%. Based on these considerations, an expression is given to calculate the cut size of 2D nanosheets in preparative centrifugation experiments.

5.
RSC Adv ; 13(26): 18001-18013, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323457

RESUMEN

The formation mechanism of plasmonic gold nanoparticles (Au NPs) by fast NaBH4 induced reduction of the precursors is still under debate. In this work we introduce a simple method to access intermediate species of Au NPs by quenching the solid formation process at desired time periods. In this way, we take advantage of the covalent binding of glutathione on Au NPs to stop their growth. By applying a plethora of precise particle characterization techniques, we shed new light on the early stages of particle formation. The results of in situ UV/vis measurements, ex situ sedimentation coefficient analysis by analytical ultracentrifugation, size exclusion high performance liquid chromatography, electrospray ionization mass spectrometry supported by mobility classification and scanning transmission electron microscopy suggest an initial rapid formation of small non-plasmonic Au clusters with Au10 as the main species followed by their growth to plasmonic Au NPs by agglomeration. The fast reduction of gold salts by NaBH4 depends on mixing which is hard to control during the scale-up of batch processes. Thus, we transferred the Au NP synthesis to a continuous flow process with improved mixing. We observed that the mean volume particle sizes and the width of the particle size distribution decrease with increasing flow rate and thus higher energy input. Mixing- and reaction-controlled regimes are identified.

6.
J Colloid Interface Sci ; 641: 251-264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36933471

RESUMEN

HYPOTHESIS: The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized. EXPERIMENTS: Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles. Diffusion coefficients of gold nanoparticles in porous silica monoliths were determined without limiting refractive index matching fluids. Comparative experiments were also performed with the same nanoparticles and porous silica monolith but applying refractive index matching. FINDINGS: Two distinct diffusivities could be determined inside the porous silica monolith, both smaller than that in free media, showing a slowing-down of the diffusion processes of nanoparticles under confinement. While the larger diffusivity can be related to the slightly slowed-down diffusion of particles in the bulk of the pores and in the necks connecting individual pores, the smaller diffusivity might be related to the diffusion of particles near the pore walls. It shows that the dynamic light scattering method with a heterodyne detection scheme can be used as a reliable and competitive tool for determining particle diffusion under confinement.

7.
Small ; 7(1): 147-56, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21132708

RESUMEN

The spontaneous shape transformation of silver nanorods with an initial length of several hundred nanometers towards spherical particle shapes in aqueous solution is investigated by means of scanning electron microscopy, UV-vis absorption spectroscopy, anodic stripping voltammetry, and high-resolution transmission electron microscopy (HRTEM). The consolidation of the results reveals an increase in the particle number density with time. Moreover, HRTEM image analysis along the cross section of the rods evidences the presence of fivefold twinning defects which extend along the whole rod length. According to the analytical model of Monk et al. this kind of rod structure is only thermodynamically stable if the rod length is below a critical value at a given diameter. The rods investigated in the present work do not fulfill the stability criterion as they exceed the critical length. Thus, the rods decay into smaller "nanobuns" and defective as well as defect-free spheres. A mechanism based on findings from the literature, HRTEM image analysis of former rods, transition states, and the final particle structures is proposed. The defects along the surface are seen as starting points for the dissolution of material, which is reintegrated into the solid phase by homogeneous as well as heterogeneous nucleation and growth.


Asunto(s)
Nanotecnología/métodos , Nanotubos/química , Plata/química
8.
J Colloid Interface Sci ; 582(Pt B): 883-893, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32919116

RESUMEN

Performance of a proton exchange membrane fuel cell (PEMFC) is significantly determined by the structure and composition of the electrode layer. Electrode layers are formed from inks consisting of platinum-doped carbon black particles, perfluorosulfonic acid (PFSA) ionomer and a dispersing solvent. Interaction between these materials mainly influences suspension stability, ionomer conformation and therewith layer morphology. We characterize the interplay between a short sidechain (SSC) PFSA ionomer (Aquivion® D79-25BS) and a solvent mixture (diacetone alcohol (DAA) and water with different weight ratios) by using Hansen solubility/dispersibility parameters (HSP) and by experimental tests. It was found that HSPs are well suitable to describe the ionomer/solvent interactions. In particular, the HSP difference in terms of the hydrogen bonds is responsible for the poor affinity between ionomer and solvent at low DAA concentrations. With increasing DAA content the affinity between ionomer and solvent increases as indicated by better matching HSPs. For an ionomer concentration of 4 wt%, Aquivion always forms molecular solutions for all DAA-in-water mixing ratios. Self-organization of the ionomer molecules changes from densely packed/collapsed molecules with highly deprotonated sulfonic acid side groups at low DAA concentrations to unfolded Aquivion molecules with a low dissociation degree of the sulfonic acid groups at high DAA concentrations.

9.
Nanoscale ; 13(30): 13116-13128, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477795

RESUMEN

Carbon dots (CDs) are strongly fluorescent advanced materials that are promising for applications in bio-imaging, sensors or luminescent displays. One of the most-widely used class of CDs is synthesized via an aqueous, bottom-up technique starting from citric acid (CA) and an amino-precursor. Very high fluorescence quantum yields (QY) are reported for the resulting CDs. The as-synthesized raw suspensions, however, are crude mixtures of many components: bare carbon cores, carbon cores functionalized with fluorophores, freely floating molecular fluorophores, and several other by-products. In this study, we synthesized CDs from CA and amino acid cysteine (Cys) hydrothermally and demonstrate a complete separation of all components by means of two step gradient chromatography. In the first step, the separation was carried out on a normal-pressure preparative silica-gel column to get sufficient amounts of material to investigate structure and optical properties of the collected fractions. This preparative gradient elution method enabled us to separate moderately-fluorescent CDs from freely floating molecular fluorophores, polymeric fluorophores and CDs with built-in fluorophores. Here, we evidenced that amorphous CDs co-exist with crystalline CDs in one and the same suspension and showed that the amount of crystalline CDs increases with the synthesis temperature. In the second step, we turned to high performance liquid chromatography (HPLC) to further improve and optimize the efficiency of purification and automate it. Via HPLC, we were able to well-separate of up to six components. Within this work, we laid the foundation for CD purification with the highest possible purity for aqueous, bottom-up synthesized CDs and quantified the true quantum yield of CDs.


Asunto(s)
Carbono , Puntos Cuánticos , Cromatografía , Colorantes Fluorescentes , Agua
10.
Nanoscale ; 12(22): 12114-12125, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32484198

RESUMEN

Although optimized synthesis methods for nanoparticles (NPs) on small scale can lead to narrow particle size distributions (PSDs) and thus defined optical properties, in particular during scale-up, an additional classification step must be applied to adjust the particle properties according to the needs of the later application. NP chromatography is a promising separation method, which can be potentially transferred to preparative and industrial scale. Herein, we demonstrate that remarkable classification of ZnS quantum dots (QDs) with respect to the fundamental band gap energy is achieved by chromatography although the PSD of the feed material is already very narrow (1.5-3.0 nm). We investigated the interactions of ZnS QDs with stationary and mobile phase materials in order to select a proper material couple so that irreversible NP adhesion, agglomeration, decomposition or dissolution of the ZnS QDs during the chromatographic experiments are avoided and highly reproducible chromatograms are obtained. Using a fraction collector, the already narrowly size distributed feed material was separated into coarse and fine fractions with distinct band gap energies. For characterization of the chromatographic fractionation, quantities known from particle technology, i.e. separation efficiency, cut size and yield, were adapted to the band gap energy distributions accessible from UV/Vis spectroscopy. The optimization of process conditions (flow rate, temperature, switching time of the fraction collector) allows fine-tuning of the property classification and therefore of the optical properties within the narrow distribution of the ZnS QDs. Our study shows the strength and high potential of chromatography for preparative and continuous separation of NPs even in case of narrow size-distributed sub-10 nm semiconductor QDs.

11.
Nanoscale ; 11(17): 8464-8474, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30990494

RESUMEN

Carbon dots (CDs) are an astonishing class of fluorescent materials with many applications in bioimaging, drug delivery, photovoltaics and photocatalysis due to their outstanding luminescence properties and low toxicity. However, the internal CD structure of bottom-up synthesized CDs is still the subject of considerable debate. Unambiguous analysis of the internal CD composition is hampered by the fact that reaction products usually contain mixtures of several CD fractions as well as molecular intermediate and side products. Therefore, purification and careful separation of the various CD fractions is vital for structural analysis and isolation of pure CDs possessing optimized optical properties. In this study, CD solutions were synthesized from citric acid and cysteine via a one-pot hydrothermal synthesis. A simple column chromatography unit was used to systematically study the influence of the molar precursor ratios and synthesis conditions (temperature, reaction time) on the CD solution composition. By investigating the structural and optical properties of the chromatographically separated fractions, three different fluorescent species could be identified. Freely floating molecular fluorophores left the column first, followed by highly fluorescent CDs with fluorophores bound to the carbon core, finally followed by low-fluorescent carbon particles without fluorophores. We demonstrate that the CD solution composition and the internal structure of the individual fluorescent components can be clarified via chromatographic separation. This information can be further applied to isolate pure CDs with optimized optical properties.

12.
J Phys Chem B ; 123(44): 9491-9502, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31592668

RESUMEN

Polarized dynamic light scattering (DLS) gives access to orientation-averaged translational and rotational diffusion coefficients of anisotropic particles dispersed in fluids in a single experiment. As the combination of both diffusivities contains information on the morphology of the particles, their simultaneous and accurate measurement for the same sample and thermodynamic state is beneficial for particle characterization. For nontransparent model suspensions of gold nanorods in water and water-glycerol mixtures, a scattering geometry in reflection direction was realized, which minimizes multiple scattering and allows using low laser powers to avoid laser heating. Furthermore, a heterodyne detection scheme was guaranteed by superimposing much stronger reference light to the scattered light. This ensures an unambiguous data evaluation and reduces the uncertainties for the rotational and the translational diffusivity, where the latter is accessible with smaller uncertainty. For the water-based suspensions, both diffusivities agree well with the stick hydrodynamic theory for rods and show an Andrade-type behavior in the studied temperature range from 271 to 323 K. The measured results for both diffusivities, particularly for the rotational diffusivity, indicate a breakdown of the stick boundary conditions for dynamic viscosities larger than 4 mPa·s.

13.
Photochem Photobiol Sci ; 6(2): 159-64, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17277839

RESUMEN

The semiconductor catalyzed photoaddition of cyclopentene or cyclohexene to various novel electron-poor imines of type p-XC(6)H(4)(CN)C[double bond, length as m-dash]N(COPh) (X = H, F, Cl, Br, Me, MeO) was investigated as a function of the nature of the cadmium sulfide photocatalyst. Irradiation (lambda>/= 350 nm) of silica supported cadmium sulfide surprisingly did not afford the expected olefin-imine adducts but an imine hydrocyanation product via an unprecedented dark reaction. However, when silica was replaced by zinc sulfide as the support for cadmium sulfide, the expected homoallylic N-benzoyl-alpha-amino cyanides were isolated in yields of 65-84%. Thus, chemoselectivity is introduced through replacing an insulating by a semiconducting support, a hitherto unknown effect in semiconductor photocatalysis. From the sign of the time resolved photovoltage it is found that the mixed metal sulfide interface CdS/ZnS increases the lifetime of photogenerated electron-hole pairs by about one order of magnitude as compared to the SiO(2)/CdS system. The reaction rate increases with increasing imine sigma-Hammett constants and decreasing stability of intermediate benzyl radicals.


Asunto(s)
Compuestos de Cadmio/química , Ciclohexenos/química , Ciclopentanos/química , Iminas/química , Sulfuros/química , Compuestos de Zinc/química , Compuestos de Cadmio/efectos de la radiación , Catálisis , Cristalografía por Rayos X , Ciclohexenos/efectos de la radiación , Ciclopentanos/efectos de la radiación , Iminas/efectos de la radiación , Modelos Moleculares , Estructura Molecular , Fotoquímica , Semiconductores , Dióxido de Silicio/química , Dióxido de Silicio/efectos de la radiación , Sulfuros/efectos de la radiación , Factores de Tiempo , Rayos Ultravioleta , Compuestos de Zinc/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA