Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 42(2): 113-126, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852642

RESUMEN

OBJECTIVE: IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS: Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/genética , Quimiocina CXCL12/sangre , Factor I del Crecimiento Similar a la Insulina/genética , Macrófagos/metabolismo , Animales , Aterosclerosis/sangre , Aterosclerosis/patología , Quimiocina CXCL12/análisis , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Ratas , Células THP-1 , Regulación hacia Arriba
2.
Am J Physiol Heart Circ Physiol ; 319(4): H730-H743, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32795184

RESUMEN

Insulin-like growth factor-1 (IGF-1) decreases atherosclerosis in apolipoprotein E (Apoe)-deficient mice when administered systemically. However, mechanisms for its atheroprotective effect are not fully understood. We generated endothelium-specific IGF-1 receptor (IGF1R)-deficient mice on an Apoe-deficient background to assess effects of IGF-1 on the endothelium in the context of hyperlipidemia-induced atherosclerosis. Endothelial deficiency of IGF1R promoted atherosclerotic burden, when animals were fed on a high-fat diet for 12 wk or normal chow for 12 mo. Under the normal chow feeding condition, the vascular relaxation response to acetylcholine was increased in the endothelial IGF1R-deficient aorta; however, feeding of a high-fat diet substantially attenuated the relaxation response, and there was no difference between endothelial IGF1R-deficient and control mice. The endothelium and its intercellular junctions provide a barrier function to the vasculature. In human aortic endothelial cells, IGF-1 upregulated occludin, claudin 5, VE-cadherin, JAM-A, and CD31 expression levels, and vice versa, specific IGF1R inhibitor, picropodophyllin, an IGF1R-neutralizing antibody (αIR3), or siRNA to IGF1R abolished the IGF-1 effects on junction and adherens proteins, suggesting that IGF-1 promoted endothelial barrier function. Moreover, endothelial transwell permeability assays indicated that inhibition of IGF-1 signaling elevated solute permeability through the monolayer of human aortic endothelial cells. In summary, endothelial IGF1R deficiency increases atherosclerosis, and IGF-1 positively regulates tight junction protein and adherens junction protein levels and endothelial barrier function. Our findings suggest that the elevation of the endothelial junction protein level is, at least in part, the mechanism for antiatherogenic effects of IGF-1.NEW & NOTEWORTHY Endothelial insulin-like growth factor-1 (IGF-1) receptor deficiency significantly elevated atherosclerotic burden in apolipoprotein E-deficient mice, mediated at least in part by downregulation of intercellular junction proteins and, thus, elevated endothelial permeability. This study revealed a novel role for IGF-1 in supporting endothelial barrier function. These findings suggest that IGF-1's ability to promote endothelial barrier function may offer a novel therapeutic strategy for vascular diseases such as atherosclerosis.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Receptor IGF Tipo 1/deficiencia , Animales , Antígenos CD/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Cadherinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Placa Aterosclerótica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Células THP-1 , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 38(10): 2306-2317, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30354209

RESUMEN

Objective- IGF-1 (insulin-like growth factor 1) is a major autocrine/paracrine growth factor, which promotes cell proliferation, migration, and survival. We have shown previously that IGF-1 reduced atherosclerosis and promoted features of stable atherosclerotic plaque in Apoe-/- mice-an animal model of atherosclerosis. The aim of this study was to assess effects of smooth muscle cell (SMC) IGF-1 signaling on the atherosclerotic plaque. Approach and Results- We generated Apoe-/- mice with IGF1R (IGF-1 receptor) deficiency in SMC and fibroblasts (SM22α [smooth muscle protein 22 α]-CreKI/IGF1R-flox mice). IGF1R was decreased in the aorta and adventitia of SM22α-CreKI/IGF1R-flox mice and also in aortic SMC, embryonic, skin, and lung fibroblasts isolated from SM22α-CreKI/IGF1R-flox mice. IGF1R deficiency downregulated collagen mRNA-binding protein LARP6 (La ribonucleoprotein domain family, member 6) and vascular collagen, and mice exhibited growth retardation. The high-fat diet-fed SM22α-CreKI/IGF1R-flox mice had increased atherosclerotic burden and inflammatory responses. α-SMA (α-smooth muscle actin)-positive plaque cells had reduced proliferation and elevated apoptosis. SMC/fibroblast-targeted decline in IGF-1 signaling decreased atherosclerotic plaque SMC, markedly depleted collagen, reduced plaque fibrous cap, and increased plaque necrotic cores. Aortic SMC isolated from SM22α-CreKI/IGF1R-flox mice had decreased cell proliferation, migration, increased sensitivity to apoptosis, and these effects were associated with disruption of IGF-1-induced Akt signaling. Conclusions- IGF-1 signaling in SMC and in fibroblast is a critical determinant of normal vascular wall development and atheroprotection.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Regiones Promotoras Genéticas , Receptor IGF Tipo 1/deficiencia , Actinas/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Autoantígenos/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibrosis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Ribonucleoproteínas/metabolismo , Transducción de Señal , Antígeno SS-B
4.
Circulation ; 133(23): 2263-78, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27154724

RESUMEN

BACKGROUND: We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unknown. METHODS AND RESULTS: To determine mechanisms whereby IGF-1 reduces atherosclerosis and to explore the potential involvement of monocytes/macrophages, we created monocyte/macrophage-specific IGF1R knockout (MΦ-IGF1R-KO) mice on an Apoe(-/-) background. We assessed atherosclerotic burden, plaque features of stability, and monocyte recruitment to atherosclerotic lesions. Phenotypic changes of IGF1R-deficient macrophages were investigated in culture. MΦ-IGF1R-KO significantly increased atherosclerotic lesion formation, as assessed by Oil Red O staining of en face aortas and aortic root cross-sections, and changed plaque composition to a less stable phenotype, characterized by increased macrophage and decreased α-smooth muscle actin-positive cell population, fibrous cap thinning, and decreased collagen content. Brachiocephalic artery lesions of MΦ-IGF1R-KO mice had histological features implying plaque vulnerability. Macrophages isolated from MΦ-IGF1R-KO mice showed enhanced proinflammatory responses on stimulation by interferon-γ and oxidized low-density lipoprotein and elevated antioxidant gene expression levels. Moreover, IGF1R-deficient macrophages had decreased expression of ABCA1 and ABCG1 and reduced lipid efflux. CONCLUSIONS: Our data indicate that macrophage IGF1R signaling suppresses macrophage and foam cell accumulation in lesions and reduces plaque vulnerability, providing a novel mechanism whereby IGF-1 exerts antiatherogenic effects.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , Receptor IGF Tipo 1/deficiencia , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Plasticidad de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Células Espumosas/metabolismo , Células Espumosas/patología , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/farmacología , Interferón gamma/farmacología , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Noqueados , Fenotipo , Receptor IGF Tipo 1/genética , Rotura Espontánea
5.
Stem Cells ; 32(6): 1616-28, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24449042

RESUMEN

Adipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI. To better understand how ASCs may act in ALI and to elucidate the mechanism(s) involved in ASC modulation of lung inflammation, gene expression analysis was performed in ASC-treated (hASCs or mASCs) and control sham-treated lungs. The results revealed a dramatic difference between the expression of anti-inflammatory molecules by hASCs and mASCs. These data show that the beneficial effects of hASCs and mASCs in ALI may result from the production of different paracrine factors. Interleukin 6 (IL-6) expression in the mASC-treated lungs was significantly elevated as compared to sham-treated controls 20 hours after delivery of the cells by oropharyngeal aspiration. Knockdown of IL-6 expression in mASCs by RNA interference abrogated most of their therapeutic effects, suggesting that the anti-inflammatory properties of mASCs in ALI are explained, at least in part, by activation of IL-6 secretion.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Tejido Adiposo/citología , Interleucina-6/metabolismo , Trasplante de Células Madre , Células Madre/citología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Albúminas/metabolismo , Animales , Antiinflamatorios/metabolismo , Líquido del Lavado Bronquioalveolar , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Factor Inhibidor de Leucemia/metabolismo , Lipopolisacáridos , Pulmón/patología , Ratones Endogámicos C57BL , Células del Estroma
6.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36602878

RESUMEN

Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque's fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1's effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Ratones , Humanos , Animales , Porcinos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología
7.
Biochem Biophys Res Commun ; 408(4): 630-4, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21531207

RESUMEN

BACKGROUND: Endothelial barrier dysfunction (EBD) involves microtubule disassembly and enhanced cell contractility. Histone deacetylase 6 (HDAC6) deacetylates α-tubulin, and thereby destabilizes microtubules. This study investigates a role for HDAC6 in EBD. METHODS: EBD was induced with thrombin±HDAC6 inhibitors (tubacin and MC1575), and assessed by transendothelial electrical resistance (TEER). Markers for microtubule disassembly (α-tubulin and acetylated α-tubulin) and contraction (phosphorylated myosin light chain 2, P-MLC2) were measured using immunoblots and immunofluorescence. RESULTS AND CONCLUSION: Thrombin induced a ∼50% decrease in TEER that was abrogated by the HDAC6 inhibitors. Moreover, inhibition of HDAC6 diminished edema in the lung injured by lipopolysaccharide. Lastly, inhibition of HDAC6 attenuated thrombin-induced microtubule disassembly and P-MLC2. Our results suggest that HDAC6 can be targeted to limit EBD.


Asunto(s)
Endotelio Vascular/enzimología , Histona Desacetilasas/metabolismo , Microtúbulos/metabolismo , Edema Pulmonar/enzimología , Acetilación , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Permeabilidad , Trombina/farmacología
8.
Am J Hypertens ; 20(12): 1297-304, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18047920

RESUMEN

BACKGROUND: Preeclampsia is a human pregnancy-associated syndrome associated with hypertension, proteinuria, and endothelial dysfunction. We tested whether increased reactive oxygen species (superoxide and peroxynitrite) production and decreased bioavailability of the endothelial nitric oxide (NO) synthase (eNOS) cofactor tetrahydrobiopterin (BH4) contributes to maternal endothelial dysfunction in rats with pregnancy-induced hypertension and several characteristics of preeclampsia. METHODS: Nonpregnant (DS) and pregnant (PDS) rats were treated with deoxycorticosterone acetate and 0.9% saline for approximately 3 weeks and nonpregnant (Con) and pregnant (P) rats received tap water. Blood pressure, urinary protein levels, mesenteric vascular reactivity, aortic protein expression, and aortic reactive oxygen species levels were compared between the four groups. RESULTS: The PDS rats had significantly decreased mesenteric endothelium-dependent relaxation responses and aortic NO production compared to Con, DS, and P rats despite increased aortic eNOS expression. Aortic superoxide and peroxynitrite levels were increased in PDS rats compared with Con, DS, and P rats. Scavenging of reactive oxygen species or increasing tetrahydrobiopterin levels normalized mesenteric endothelium-dependent relaxation responses, aortic NO production, and aortic superoxide and peroxynitrite levels in PDS rats. CONCLUSIONS: These data suggest that increased superoxide production by NADPH oxidase, peroxynitrite degradation of BH4, and uncoupled eNOS contribute to endothelial dysfunction in a rat model of pregnancy-induced hypertension.


Asunto(s)
Hipertensión Inducida en el Embarazo/etiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Aorta/metabolismo , Disponibilidad Biológica , Biopterinas/administración & dosificación , Biopterinas/análogos & derivados , Biopterinas/farmacocinética , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Hipertensión Inducida en el Embarazo/metabolismo , NADPH Oxidasas/metabolismo , Embarazo , Proteinuria/diagnóstico , Ratas , Ratas Sprague-Dawley
9.
PLoS One ; 12(10): e0186615, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29045477

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal disease. Histone deacetylase 6 (HDAC6) alters function and fate of various proteins via deacetylation of lysine residues, and is implicated in TGF-ß1-induced EMT (epithelial-mesenchymal transition). However, the role of HDAC6 in pulmonary fibrosis is unknown. METHODS: HDAC6 expression in IPF and control lungs was assessed by quantitative real-time PCR (qRT-PCR) and immunoblots. Lung fibroblasts were treated with TGF-ß1 ± HDAC6 inhibitors (Tubacin, Tubastatin, ACY1215, or MC1568), and fibrotic markers such as type I collagen were assessed using qRT-PCR and immunoblots. Mice were treated with bleomycin (oropharyngeal aspiration; single dose) ± Tubastatin (intraperitoneally injection; daily for 21 days), and lung collagen expression was gauged using immunoblots and trichrome staining. In a separate experiment, HDAC6 wild-type (WT) and knockout (KO) mice were administered bleomycin, and lungs were evaluated in the same manner. RESULTS: HDAC6 expression was deregulated in IPF lungs. Among the HDAC6 inhibitors tested, only Tubastatin significantly repressed TGF-ß1-induced expression of type-1 collagen in lung fibroblasts, and this finding was coupled with decreased Akt phosphorylation and increased Akt-PHLPP (PH domain and Leucine rich repeat Protein Phosphatase) association. Tubastatin repressed TGF-ß1-induced S6K phosphorylation, HIF-1α expression, and VEGF expression. Tubastatin also repressed TGF-ß1-induced inhibition of LC3B-II (a marker of autophagosome formation). In bleomycin-treated mouse lungs, HDAC6 expression was increased, and Tubastatin repressed type-1 collagen expression. However, in HDAC6 KO mice, bleomycin-induced type-1 collagen expression was not repressed compared to WT mice. Knockdown of HDAC6, as well as HDAC10, another potential Tubastatin target, did not inhibit TGF-ß1-induced collagen expression in lung fibroblasts. CONCLUSIONS: HDAC6 expression is altered during lung fibrogenesis. Tubastatin represses TGF-ß1-induced collagen expression, by diminishing Akt phosphorylation and regulating downstream targets such as HIF-1α-VEGF axis and autophagy. Tubastatin-treated WT mice are protected against bleomycin-induced fibrosis, but HDAC6 KO mice are not. Our data suggest that Tubastatin ameliorates pulmonary fibrosis, by targeting the TGFß-PI3K-Akt pathway, likely via an HDAC6-independent mechanism.


Asunto(s)
Ácidos Hidroxámicos/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Indoles/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Bleomicina , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Indoles/farmacología , Pulmón/metabolismo , Pulmón/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Persona de Mediana Edad , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Exp Biol Med (Maywood) ; 231(2): 215-20, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16446498

RESUMEN

The study of the pathogenesis of preeclampsia has been hampered by a relative dearth of animal models. We developed a rat model of preeclampsia in which the excretion of a circulating inhibitor of Na/K ATPase, marinobufagenin (MBG), is elevated. These animals develop hypertension, proteinuria, and intrauterine growth restriction. The administration of a congener of MBG, resibufogenin (RBG), reduces blood pressure to normal in these animals, as is the case when given to pregnant animals rendered hypertensive by the administration of MBG. Studies of Na/K ATPase inhibition by MBG and RBG reveal that these agents are equally effective as inhibitors of the enzyme.


Asunto(s)
Bufanólidos/uso terapéutico , Hipertensión/tratamiento farmacológico , Preeclampsia/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Bufanólidos/química , Bufanólidos/metabolismo , Bufanólidos/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Ouabaína/metabolismo , Embarazo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
11.
Biochim Biophys Acta ; 1652(2): 126-35, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14644048

RESUMEN

The activity of mammalian pyruvate dehydrogenase complex (PDC) is regulated by a phosphorylation/dephosphorylation cycle. Dephosphorylation accompanied by activation is carried out by two genetically different isozymes of pyruvate dehydrogenase phosphatase, PDP1c and PDP2c. Here, we report data showing that PDP1c and PDP2c display marked biochemical differences. The activity of PDP1c strongly depends upon the simultaneous presence of calcium ions and the E2 component of PDC. In contrast, the activity of PDP2c displays little, if any, dependence upon either calcium ions or E2. Furthermore, PDP2c does not appreciably bind to PDC under the conditions when PDP1c exists predominantly in the PDC-bound state. The stimulatory effect of E2 on PDP1c can be partially mimicked by a monomeric construct consisting of the inner lipoyl-bearing domain and the E1-binding domain of E2 component. This strongly suggests that the E2-mediated activation of PDP1c largely reflects the effects of co-localization and mutual orientation of PDP1c and E1 component facilitated by their binding to E2. Both PDP1c and PDP2c can efficiently dephosphorylate all three phosphorylation sites located on the alpha chain of the E1 component. For PDC phosphorylated at a single site, the relative rates of dephosphorylation of individual sites are: 2>site 3>site 1. Phosphorylation of sites 2 or 3 in addition to site 1 does not have a significant effect on the rates of dephosphorylation of individual sites by PDP1c, suggesting a random mechanism of dephosphorylation. In contrast, there is a significant decrease in the overall rate of dephosphorylation of pyruvate dehydrogenase by PDP2c under these conditions. This indicates that the mechanism of dephosphorylation of PDC phosphorylated at multiple sites by PDP2c is not purely random. These marked differences in the site-specificity displayed by PDP1c and PDP2c should be particularly important under conditions such as starvation and diabetes, which are associated with a great increase in phosphorylation of sites 2 and 3 of pyruvate dehydrogenase.


Asunto(s)
Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Acetilación , Animales , Sitios de Unión , Humanos , Isoenzimas , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Estructura Terciaria de Proteína , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/genética , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
12.
Biochim Biophys Acta ; 1700(1): 43-51, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15210124

RESUMEN

The catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) is a magnesium-dependent protein phosphatase that regulates the activity of mammalian pyruvate dehydrogenase complex. Based on the sequence analysis, it was hypothesized that PDP1c is related to the mammalian magnesium-dependent protein phosphatase type 1, with Asp54, Asp347, and Asp445 contributing to the binuclear metal-binding center, and Asn49 contributing to the phosphate-binding sites. In this study, we analyzed the functional significance of these amino acid residues using a site-directed mutagenesis. It was found that substitution of each of these residues had a significant impact on PDP1c activity toward the protein substrate. The activities of Asp54, Asp347, and Asp445 mutants were decreased more than 1000-fold. The activity of Asn49 mutant was 2.5-fold lower than the activity of wild-type PDP1c. The decrease in activity of Asp54 and Asp347 came about, most likely, as a result of impaired magnesium binding. Unexpectedly, it was found that the Asp445 mutant bound Mg(2+) ions similarly to the wild-type enzyme. Accordingly, the Asp445 mutant was found to be active with the artificial substrate p-nitrophenyl phosphate (pNPP). Asp54 and Asp347 mutants did not demonstrate any appreciable activity with pNPP. Together, these observations strongly suggest that Asn49, Asp54, and Asp347 are important for the catalysis of the phosphatase reaction, contributing to the phosphate- and metal-binding centers of PDP1c. In contrast, Asp445 is not required for catalysis. The exact role of Asp445 remains to be established, but indirect evidence suggests that it might be involved in the control of interactions between PDP1c and the protein substrate pyruvate dehydrogenase.


Asunto(s)
Dominio Catalítico , Mutagénesis Sitio-Dirigida/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Cromatografía de Afinidad , Cinética , Magnesio/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteína Fosfatasa 1 , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/aislamiento & purificación , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/metabolismo , Triptófano/metabolismo
13.
Aging Cell ; 14(5): 774-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26059457

RESUMEN

Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age-dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle-aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFß1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts' fate. On the contrary, FMD mediated by TGFß1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFß1-adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age-related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age-related fibrotic diseases.


Asunto(s)
Envejecimiento , Autofagia , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo , Fibrosis Pulmonar/genética , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/genética
14.
Physiol Rep ; 3(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26660560

RESUMEN

Both cigarette smoke (CS) and asbestos cause lung inflammation and lung cancer, and at high asbestos exposure levels, populations exposed to both of these carcinogens display a synergistic increase in the development of lung cancer. The mechanisms through which these two toxic agents interact to promote lung tumorigenesis are poorly understood. Here, we begin to dissect the inflammatory signals induced by asbestos in combination with CS using a rodent inhalation model and in vitro cell culture. Wild-type C57BL/6 mice were exposed to room air as a control, CS, and/or asbestos (4 days per week to CS and 1 day per week to asbestos for 5 weeks). Bronchoalveolar lavage (BAL) fluid was collected following exposure and analyzed for inflammatory mediators. Asbestos-exposed mice displayed an increased innate immune response consistent with NLRP3 inflammasome activation. Compared to mice exposed only to asbestos, animals coexposed to CS + asbestos displayed attenuated levels of innate immune mediators and altered inflammatory cell recruitment. Histopathological changes in CS + asbestos-exposed mice correlated with attenuated fibroproliferative lesion development relative to their counterparts exposed only to asbestos. In vitro experiments using a human monocyte cell line (THP-1 cells) supported the in vivo results in that coexposure to cigarette smoke extract repressed NLRP3 inflammasome markers in cells treated with asbestos. These observations indicate that CS represses central components of the innate immune response to inhaled asbestos.

15.
Stem Cell Res Ther ; 4(1): 13, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360775

RESUMEN

INTRODUCTION: Adipose-derived stem cells (ASCs) have emerged as important regulators of inflammatory/immune responses in vitro and in vivo and represent attractive candidates for cell-based therapies for diseases that involve excessive inflammation. Acute lung injury (ALI) is an inflammatory condition for which treatment is mainly supportive due to lack of effective therapies. In this study, the therapeutic effects of ASC-based therapy were assessed in vivo by comparison of the anti-inflammatory properties of both human and murine ASCs in a mouse model of lipopolysaccharide (LPS)-induced ALI. METHODS: Human ASCs (hASCs) or mouse ASCs (mASCs) were delivered to C57Bl/6 mice (7.5 × 105 total cells/mouse) by oropharyngeal aspiration (OA) four hours after the animals were challenged with lipopolysaccharide (15 mg/kg). Mice were sacrificed 24 and 72 hours after LPS exposure, and lung histology examined for evaluation of inflammation and injury. Bronchoalveolar lavage fluid (BALF) was analyzed to determine total and differential cell counts, total protein and albumin concentrations, and myeloperoxidase (MPO) activity. Cytokine expression in the injured lungs was measured at the steady-state mRNA levels and protein levels for assessment of the degree of lung inflammation. RESULTS: Both human and mouse ASC treatments provided protective anti-inflammatory responses. There were decreased levels of leukocyte (for example neutrophil) migration into the alveoli, total protein and albumin concentrations in BALF, and MPO activity after the induction of ALI following both therapies. Additionally, cell therapy with both cell types effectively suppressed the expression of proinflammatory cytokines and increased the anti-inflammatory cytokine interleukin 10 (IL-10). Overall, the syngeneic mASC therapy had a more potent therapeutic effect than the xenogeneic hASC therapy in this model. CONCLUSIONS: Treatment with hASCs or mASCs significantly attenuated LPS-induced acute lung injury in mice. These results suggest a potential benefit for using an ASC-based therapy to treat clinical ALI and may possibly prevent the development of acute respiratory distress syndrome (ARDS).


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Tejido Adiposo/fisiología , Lipopolisacáridos/farmacología , Células Madre/fisiología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Tejido Adiposo/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-10/metabolismo , Leucocitos/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peroxidasa/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/fisiopatología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/fisiopatología , Células Madre/metabolismo
16.
Tissue Eng Part A ; 18(23-24): 2437-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22764775

RESUMEN

Currently, patients with end-stage lung disease are limited to lung transplantation as their only treatment option. Unfortunately, the lungs available for transplantation are few. Moreover, transplant recipients require life-long immune suppression to tolerate the transplanted lung. A promising alternative therapeutic strategy is decellularization of whole lungs, which permits the isolation of an intact scaffold comprised of innate extracellular matrix (ECM) that can theoretically be recellularized with autologous stem or progenitor cells to yield a functional lung. Nonhuman primates (NHP) provide a highly relevant preclinical model with which to assess the feasibility of recellularized lung scaffolds for human lung transplantation. Our laboratory has successfully accomplished lung decellularization and initial stem cell inoculation of the resulting ECM scaffold in an NHP model. Decellularization of normal adult rhesus macaque lungs as well as the biology of the resulting acellular matrix have been extensively characterized. Acellular NHP matrices retained the anatomical and ultrastructural properties of native lungs with minimal effect on the content, organization, and appearance of ECM components, including collagen types I and IV, laminin, fibronectin, and sulfated glycosaminoglycans (GAG), due to decellularization. Proteomics analysis showed enrichment of ECM proteins in total tissue extracts due to the removal of cells and cellular proteins by decellularization. Cellular DNA was effectively removed after decellularization (∼92% reduction), and the remaining nuclear material was found to be highly disorganized, very-low-molecular-weight fragments. Both bone marrow- and adipose-derived mesenchymal stem cells (MSC) attach to the decellularized lung matrix and can be maintained within this environment in vitro, suggesting that these cells may be promising candidates and useful tools for lung regeneration. Analysis of decellularized lung slice cultures to which MSC were seeded showed that the cells attached to the decellularized matrix, elongated, and proliferated in culture. Future investigations will focus on optimizing the recellularization of NHP lung scaffolds toward the goal of regenerating pulmonary tissue. Bringing this technology to eventual human clinical application will provide patients with an alternative therapeutic strategy as well as significantly reduce the demand for transplantable organs and patient wait-list time.


Asunto(s)
Pulmón/fisiología , Macaca mulatta/fisiología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Modelos Animales , Regeneración , Manejo de Especímenes/métodos , Andamios del Tejido , Animales , Apoptosis , Adhesión Celular , ADN/aislamiento & purificación , Ácido Desoxicólico/farmacología , Desoxirribonucleasas/farmacología , Detergentes/farmacología , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/análisis , Femenino , Fijadores/farmacología , Glicosaminoglicanos/análisis , Pulmón/química , Pulmón/efectos de los fármacos , Pulmón/ultraestructura , Macaca mulatta/anatomía & histología , Masculino , Perfusión , Proteómica , Solución Salina Hipertónica/farmacología , Andamios del Tejido/química
17.
Stem Cell Res Ther ; 2(3): 27, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21569482

RESUMEN

INTRODUCTION: Multipotent stromal cells (MSCs) are currently in clinical trials for a number of inflammatory diseases. Recent studies have demonstrated the ability of MSCs to attenuate inflammation in rodent models of acute lung injury (ALI) suggesting that MSCs may also be beneficial in treating ALI. METHODS: To better understand how human MSCs (hMSCs) may act in ALI, the lungs of immunocompetent mice were exposed to lipopolysaccharide (LPS) and four hours later bone marrow derived hMSCs were delivered by oropharyngeal aspiration (OA). The effect of hMSCs on lung injury was assessed by measuring the lung wet/dry weight ratio and total protein in bronchoalveolar lavage (BAL) fluid 24 or 48 h after LPS. BAL fluid was also analyzed for the presence of inflammatory cells and cytokine expression by multiplex immunoassay. Microarray analysis of total RNA isolated from treated and untreated lungs was performed to elucidate the mechanism(s) involved in hMSC modulation of lung inflammation. RESULTS: Administration of hMSCs significantly reduced the expression of pro-inflammatory cytokines, neutrophil counts and total protein in bronchoalveolar lavage. There was a concomitant reduction in pulmonary edema. The anti-inflammatory effects of hMSCs were not dependent on localization to the lung, as intraperitoneal administration of hMSCs also attenuated LPS-induced inflammation in the lung. Microarray analysis revealed significant induction of tumor necrosis factor (TNF)-α-induced protein 6 (TNFAIP6/TSG-6) expression by hMSCs 12 h after OA delivery to LPS-exposed lungs. Knockdown of TSG-6 expression in hMSCs by RNA interference abrogated most of their anti-inflammatory effects. In addition, intra-pulmonary delivery of recombinant human TSG-6 reduced LPS-induced inflammation in the lung. CONCLUSIONS: These results show that hMSCs recapitulate the observed beneficial effects of rodent MSCs in animal models of ALI and suggest that the anti-inflammatory properties of hMSCs in the lung are explained, at least in part, by activation of hMSCs to secrete TSG-6.


Asunto(s)
Lesión Pulmonar Aguda/cirugía , Células Madre Adultas/trasplante , Moléculas de Adhesión Celular/fisiología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Adulto , Células Madre Adultas/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Permeabilidad Capilar , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas/metabolismo , Células Cultivadas/trasplante , Quimiotaxis de Leucocito , Citocinas/análisis , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipopolisacáridos/toxicidad , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Edema Pulmonar/prevención & control , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Estallido Respiratorio , Trasplante Heterólogo
18.
J Pharmacol Exp Ther ; 318(3): 1027-32, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16717105

RESUMEN

Preeclampsia is a disorder that continues to exact a significant toll with respect to maternal morbidity and mortality as well as fetal wastage. Furthermore, the treatment of this disorder has not changed significantly in 50 years and is unsatisfactory. The use of diuretics in this syndrome is controversial because there is a concern related to potential baleful effects of volume contraction leading to a possible further decrement in the perfusion of the maternal-fetal unit. Metolazone is a diuretic/antihypertensive agent, which has a therapeutic effect on blood pressure (BP) in human essential hypertension without causing a natriuresis. We administered the drug in nondiuretic doses in a rat model of preeclampsia previously developed in this laboratory. The drug reduced BP without an accompanying natriuresis. Although there was a trend toward an improvement in intrauterine growth restriction, as determined by litter size and the number of pups demonstrating malformations, the values did not reach statistical significance. We conclude that metolazone, in low dosage, is an effective antihypertensive in this rat model. These studies have implications for the treatment of the human disorder.


Asunto(s)
Antihipertensivos/uso terapéutico , Metolazona/uso terapéutico , Preeclampsia/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Óxido Nítrico/sangre , Óxido Nítrico/orina , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA