Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683374

RESUMEN

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Brasil , Humanos , Malaria Vivax/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Caspasas/genética , Caspasas/metabolismo , Expresión Génica/genética
2.
Brain Behav Immun ; 109: 102-104, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657622

RESUMEN

Malaria, an ancient infectious parasitic disease, is caused by protozoa of the genus Plasmodium, whose erythrocytic cycle is accompanied by fever, headache, sweating and chills and a systemic inflammation that can progress to severe forms of disease, including cerebral malaria. Approximately 25% of survivors of this syndrome develop sequelae that may include neurological, neurocognitive, behavioral alterations and poor school performance. Furthermore, some outcomes have also been recorded following episodes of non-severe malaria, which correspond to the most common clinical form of the disease worldwide. There is a body of evidence that neuroinflammation, due to systemic inflammation, plays an important role in the neuropathogenesis of malaria culminating in these cognitive dysfunctions. Preclinical studies suggest that vaccination with type 2 immune response elicitors, such as the tetanus-diphtheria (Td) vaccine, may exert a beneficial immunomodulatory effect by alleviating neuroinflammation. In this viewpoint article, vaccination is proposed as a therapy approach to revert or mitigate neurocognitive deficits associated with malaria.


Asunto(s)
Malaria Cerebral , Enfermedades Neuroinflamatorias , Humanos , Malaria Cerebral/complicaciones , Vacuna contra Difteria y Tétanos , Vacunación , Inflamación , Inmunidad
3.
Malar J ; 22(1): 170, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268984

RESUMEN

BACKGROUND: Plasmodium species of non-human primates (NHP) are of great interest because they can naturally infect humans. Plasmodium simium, a parasite restricted to the Brazilian Atlantic Forest, was recently shown to cause a zoonotic outbreak in the state of Rio de Janeiro. The potential of NHP to act as reservoirs of Plasmodium infection presents a challenge for malaria elimination, as NHP will contribute to the persistence of the parasite. The aim of the current study was to identify and quantify gametocytes in NHP naturally-infected by P. simium. METHODS: Whole blood samples from 35 NHP were used in quantitative reverse transcription PCR (RT-qPCR) assays targeting 18S rRNA, Pss25 and Pss48/45 malaria parasite transcripts. Absolute quantification was performed in positive samples for 18S rRNA and Pss25 targets. Linear regression was used to compare the quantification cycle (Cq) and the Spearman's rank correlation coefficient was used to assess the correlation between the copy numbers of 18S rRNA and Pss25 transcripts. The number of gametocytes/µL was calculated by applying a conversion factor of 4.17 Pss25 transcript copies per gametocyte. RESULTS: Overall, 87.5% of the 26 samples, previously diagnosed as P. simium, were positive for 18S rRNA transcript amplification, of which 13 samples (62%) were positive for Pss25 transcript amplification and 7 samples (54%) were also positive for Pss48/45 transcript. A strong positive correlation was identified between the Cq of the 18S rRNA and Pss25 and between the Pss25 and Pss48/45 transcripts. The 18S rRNA and Pss25 transcripts had an average of 1665.88 and 3.07 copies/µL, respectively. A positive correlation was observed between the copy number of Pss25 and 18S rRNA transcripts. Almost all gametocyte carriers exhibited low numbers of gametocytes (< 1/µL), with only one howler monkey having 5.8 gametocytes/µL. CONCLUSIONS: For the first time, a molecular detection of P. simium gametocytes in the blood of naturally-infected brown howler monkeys (Alouatta guariba clamitans) was reported here, providing evidence that they are likely to be infectious and transmit P. simium infection, and, therefore, may act as a reservoir of malaria infection for humans in the Brazilian Atlantic Forest.


Asunto(s)
Malaria , Plasmodium , Animales , Humanos , ARN Ribosómico 18S/genética , Brasil/epidemiología , Plasmodium/genética , Malaria/epidemiología , Malaria/veterinaria , Malaria/parasitología , Primates/genética , Bosques , Plasmodium falciparum/genética
4.
Malar J ; 22(1): 303, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814260

RESUMEN

BACKGROUND: Malaria is endemic and represents an important public health issue in Brazil. Knowledge of risk factors for disease progression represents an important step in preventing and controlling malaria-related complications. Reports of severe forms of Plasmodium vivax malaria are now becoming a common place, but respiratory complications are described in less than 3% of global literature on severe vivax malaria. CASE PRESENTATION: A severe respiratory case of imported vivax malaria in a previously healthy 40-year-old woman has been reported. The patient died after the fifth day of treatment with chloroquine and primaquine due to acute respiratory distress syndrome. CONCLUSIONS: Respiratory symptoms started 48 h after the initiation of anti-malarial drugs, raising the hypothesis that the drugs may have been involved in the genesis of the complication. The concept that vivax malaria is a benign disease that can sometimes result in the development of serious complications must be disseminated. This report highlights, once more, the crucial importance of malaria early diagnosis, a true challenge in non-endemic areas, where health personnel are not familiar with the disease and do not consider its diagnosis promptly.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Adulto , Femenino , Humanos , Antimaláricos/efectos adversos , Malaria/epidemiología , Malaria Vivax/complicaciones , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/diagnóstico , Plasmodium vivax , Primaquina/efectos adversos
5.
Mem Inst Oswaldo Cruz ; 118: e230023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37162063

RESUMEN

Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.


Asunto(s)
Inmunidad Innata
6.
Mem Inst Oswaldo Cruz ; 117: e220184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700582

RESUMEN

BACKGROUND: Cerebral malaria is a lethal complication of Plasmodium falciparum infections in need of better therapies. Previous work in murine experimental cerebral malaria (ECM) indicated that the combination of artemether plus intraperitoneal whole blood improved vascular integrity and increased survival compared to artemether alone. However, the effects of blood or plasma transfusion administered via the intravenous route have not previously been evaluated in ECM. OBJECTIVES: To evaluate the effects of intravenous whole blood compared to intravenous plasma on hematological parameters, vascular integrity, and survival in artemether-treated ECM. METHODS: Mice with late-stage ECM received artemether alone or in combination with whole blood or plasma administered via the jugular vein. The outcome measures were hematocrit and platelets; plasma angiopoietin 1, angiopoietin 2, and haptoglobin; blood-brain barrier permeability; and survival. FINDINGS: Survival increased from 54% with artemether alone to 90% with the combination of artemether and intravenous whole blood. Intravenous plasma lowered survival to 18%. Intravenous transfusion provided fast and pronounced recoveries of hematocrit, platelets, angiopoietins levels and blood brain barrier integrity. MAIN CONCLUSIONS: The outcome of artemether-treated ECM was improved by intravenous whole blood but worsened by intravenous plasma. Compared to prior studies of transfusion via the intraperitoneal route, intravenous administration was more efficacious.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Cerebral , Malaria Falciparum , Animales , Ratones , Malaria Cerebral/complicaciones , Malaria Cerebral/tratamiento farmacológico , Antimaláricos/uso terapéutico , Transfusión de Componentes Sanguíneos , Plasma , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Administración Intravenosa
7.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511092

RESUMEN

Newly emerging data suggest that several neutrophil defense mechanisms may play a role in both aggravating and protecting against malaria. These exciting findings suggest that the balance of these cells in the host body may have an impact on the pathogenesis of malaria. To fully understand the role of neutrophils in severe forms of malaria, such as cerebral malaria (CM), it is critical to gain a comprehensive understanding of their behavior and functions. This study investigated the dynamics of neutrophil and T cell responses in C57BL/6 and BALB/c mice infected with Plasmodium berghei ANKA, murine models of experimental cerebral malaria (ECM) and non-cerebral experimental malaria, respectively. The results demonstrated an increase in neutrophil percentage and neutrophil-T cell ratios in the spleen and blood before the development of clinical signs of ECM, which is a phenomenon not observed in the non-susceptible model of cerebral malaria. Furthermore, despite the development of distinct forms of malaria in the two strains of infected animals, parasitemia levels showed equivalent increases throughout the infection period evaluated. These findings suggest that the neutrophil percentage and neutrophil-T cell ratios may be valuable predictive tools for assessing the dynamics and composition of immune responses involved in the determinism of ECM development, thus contributing to the advancing of our understanding of its pathogenesis.


Asunto(s)
Malaria Cerebral , Animales , Ratones , Neutrófilos/patología , Ratones Endogámicos C57BL , Plasmodium berghei , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511330

RESUMEN

The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Inmunidad Humoral , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusión/genética , Inmunoglobulina G , Inmunoglobulina M/genética , Antígenos de Protozoos/genética
9.
Malar J ; 21(1): 6, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983540

RESUMEN

BACKGROUND: The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. METHODS: This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. RESULTS: The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. CONCLUSIONS: The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.


Asunto(s)
Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Glicoproteínas de Membrana/inmunología , Fragmentos de Péptidos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Brasil , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
BMC Biol ; 19(1): 219, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592986

RESUMEN

BACKGROUND: Plasmodium simium, a malaria parasite of non-human primates (NHP), was recently shown to cause zoonotic infections in humans in Brazil. We sequenced the P. simium genome to investigate its evolutionary history and to identify any genetic adaptions that may underlie the ability of this parasite to switch between host species. RESULTS: Phylogenetic analyses based on whole genome sequences of P. simium from humans and NHPs reveals that P. simium is monophyletic within the broader diversity of South American Plasmodium vivax, suggesting P. simium first infected NHPs as a result of a host switch of P. vivax from humans. The P. simium isolates show the closest relationship to Mexican P. vivax isolates. Analysis of erythrocyte invasion genes reveals differences between P. vivax and P. simium, including large deletions in the Duffy-binding protein 1 (DBP1) and reticulocyte-binding protein 2a genes of P. simium. Analysis of P. simium isolated from NHPs and humans revealed a deletion of 38 amino acids in DBP1 present in all human-derived isolates, whereas NHP isolates were multi-allelic. CONCLUSIONS: Analysis of the P. simium genome confirmed a close phylogenetic relationship between P. simium and P. vivax, and suggests a very recent American origin for P. simium. The presence of the DBP1 deletion in all human-derived isolates tested suggests that this deletion, in combination with other genetic changes in P. simium, may facilitate the invasion of human red blood cells and may explain, at least in part, the basis of the recent zoonotic infections.


Asunto(s)
Malaria , Plasmodium , Animales , Proteínas Portadoras , Malaria/veterinaria , Filogenia , Plasmodium/genética , Primates , Zoonosis
11.
Malar J ; 20(1): 341, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34391426

RESUMEN

BACKGROUND: The relapsing nature of Plasmodium vivax infection is a major barrier to its control and elimination. Factors such as adequate dosing, adherence, drug quality, and pharmacogenetics can impact the effectiveness of radical cure of P. vivax and need to be adequately evaluated. CYP2D6 pathway mediates the activation of primaquine (primaquine) into an active metabolite(s) in hepatocytes, and impaired activity has been linked to a higher risk of relapse. CASES PRESENTATION: Three patients diagnosed with P. vivax malaria presented repeated relapses after being initially treated with chloroquine (25 mg/kg) and primaquine (3.5 mg/kg in 14 days) at a non-endemic travel clinic. Recurring episodes were subsequently treated with a higher dose of primaquine (7 mg/kg in 14 days), which prevented further relapses in two patients. However, one patient still presented two episodes after a higher primaquine dose and was prescribed 300 mg of chloroquine weekly to prevent further episodes. Impaired CYP2D6 function was observed in all of them. CONCLUSION: Lack of response to primaquine was associated with impaired CYP2D6 activity in three patients presenting multiple relapses followed in a non-endemic setting. Higher primaquine dosage was safe and effectively prevented relapses in two patients and should be further investigated as an option in Latin America. It is crucial to investigate the factors associated with unsuccessful radical cures and alternative therapeutic options.


Asunto(s)
Citocromo P-450 CYP2D6/deficiencia , Malaria Vivax/prevención & control , Plasmodium vivax/efectos de los fármacos , Primaquina/uso terapéutico , Prevención Secundaria , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Mem Inst Oswaldo Cruz ; 116: e200584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34076074

RESUMEN

In the present study, we investigated the genetic diversity of Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain in two municipalities of the main malaria hotspot in Brazil, i.e., the Juruá Valley, and observed complete sequence identity among all P. vivax field isolates and the Sal-1 reference strain. Analysis of PvMCA1 catalytic domain in different P. vivax genomic sequences publicly available also revealed a high degree of conservation worldwide, with very few amino acid substitutions that were not related to putative histidine and cysteine catalytic residues, whose involvement with the active site of protease was herein predicted by molecular modeling. The genetic conservation presented by PvMCA1 may contribute to its eligibility as a druggable target candidate in vivax malaria.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Brasil , Dominio Catalítico , Variación Genética/genética , Humanos , Plasmodium vivax/genética , Proteínas Protozoarias/genética
13.
Malar J ; 19(1): 81, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075659

RESUMEN

BACKGROUND: Plasmodium vivax is the most widespread human malaria parasite outside Africa and is the predominant parasite in the Americas. Increasing reports of P. vivax disease severity, together with the emergence of drug-resistant strains, underscore the urgency of the development of vaccines against P. vivax. Polymorphisms on DBP-II-gene could act as an immune evasion mechanism and, consequently, limited the vaccine efficacy. This study aimed to investigate the pvdbp-II genetic diversity in two Brazilian regions with different epidemiological patterns: the unstable transmission area in the Atlantic Forest (AF) of Rio de Janeiro and; the fixed malaria-endemic area in Brazilian Amazon (BA). METHODS: 216 Brazilian P. vivax infected blood samples, diagnosed by microscopic examination and PCR, were investigated. The region flanking pvdbp-II was amplified by PCR and sequenced. Genetic polymorphisms of pvdbp-II were estimated based on the number of segregating sites and nucleotide and haplotype diversities; the degree of differentiation between-regions was evaluated applying Wright's statistics. Natural selection was calculated using the rate of nonsynonymous per synonymous substitutions with the Z-test, and the evolutionary distance was estimated based on the reconstructed tree. RESULTS: 79 samples from AF and 137 from BA were successfully sequenced. The analyses showed 28 polymorphic sites distributed in 21 codons, with only 5% of the samples Salvador 1 type. The highest rates of polymorphic sites were found in B- and T cell epitopes. Unexpectedly, the nucleotide diversity in pvdbp-II was higher in AF (0.01) than in BA (0.008). Among the 28 SNPs detected, 18 are shared between P. vivax isolates from AF and BA regions, but 8 SNPs were exclusively detected in AF-I322S, K371N, E385Q, E385T, K386T, K411N, I419L and I419R-and 2 (N375D and I419M) arose exclusively in BA. These findings could suggest the potential of these geographical clusters as population-specific-signatures that may be useful to track the origin of infections. The sample size should be increased in order to confirm this possibility. CONCLUSIONS: The results highlight that the pvdbp-II polymorphisms are positively selected by host's immune pressure. The characterization of pvdbp-II polymorphisms might be useful for designing effective DBP-II-based vaccines.


Asunto(s)
Variación Genética , Malaria Vivax/transmisión , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Brasil , Selección Genética
15.
Mem Inst Oswaldo Cruz ; 114: e180350, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30726341

RESUMEN

BACKGROUND: The prompt diagnosis of plasmodial species for effective treatment prevents worsening of individual health and avoids transmission maintenance or even malaria reintroduction in areas where Plasmodium does not exist. Polymerase chain reaction (PCR) allows for the detection of parasites below the threshold of microscopic examination. OBJECTIVE: Our aim was to develop a real-time PCR test to reduce diagnostic errors and increase efficacy. METHODS: The lower limit of quantification and the linearity/analytical sensitivity to measure sensitivity or limit of detection (LoD) were determined. Intra-assay variations (repeatability) and alterations between assays, operators, and instruments (reproducibility) were also assessed to set precision. FINDINGS: The linearity in SYBR™ Green and TaqMan™ systems was 106 and 102 copies and analytical sensitivity 1.13 and 1.17 copies/µL, respectively. Real-time PCR was more sensitive than conventional PCR, showing a LoD of 0.01 parasite (p)/µL. Reproducibility and repeatability (precision) were 100% for up to 0.1 p/µL in SYBR™ Green and 1 p/µL in TaqMan™ and conventional PCR. CONCLUSION: Real-time PCR may replace conventional PCR in reference laboratories for P. vivax detection due to its rapidity. The TaqMan™ system is the most indicated when quantification assays are required. Performing tests in triplicate when diagnosing Plasmodium-infected-asymptomatic individuals is recommended to minimise diagnostic errors.


Asunto(s)
ADN Protozoario/genética , Malaria Vivax/diagnóstico , Plasmodium vivax/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Mem Inst Oswaldo Cruz ; 114: e180425, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30726345

RESUMEN

BACKGROUND AND OBJECTIVE: Brazil is responsible for a large number of Plasmodium vivax cases in America. Given the emergence of P. vivax parasites resistant to chloroquine and the effectiveness of antifolates in vivax malaria treatment together with a correlation between mutations in P. vivax dhfr and dhps genes and SP treatment failure, the point mutations in these genes were investigated. METHODS: Blood samples from 54 patients experiencing vivax malaria symptomatic episodes in the Amazonian Region were investigated. Genomic DNA was extracted using a DNA extraction kit (QIAGENTM). Nested polymerase chain reaction (PCR) amplification was carried out followed by Sanger sequencing to detect single nucleotide polymorphisms (SNPs). FINDINGS: All tested isolates showed non-synonymous mutations in pvdhfr gene: 117N (54/54, 100%) and 58R (25/54, 46%). Double mutant allele 58R/117N (FRTNI, 28%) was the most frequent followed by triple mutant alleles (58R/117N/173L, FRTNL, 11%; 58R/61M/117N, FRMNI, 5% 117N/173L, FSTNL, 4%) and quadruple mutant allele (58R/61M/117N/173L, FRMNL, 2%). A single mutation was observed at codon C383G in pvdhps gene (SGKAV, 48%). CONCLUSION: No evidence of molecular signatures associated with P. vivax resistance to SP was observed in the Brazilian samples.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Malaria Vivax/parasitología , Plasmodium vivax/genética , Mutación Puntual/genética , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Alelos , Brasil , ADN Protozoario/genética , Combinación de Medicamentos , Enfermedades Endémicas , Humanos , Plasmodium vivax/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
17.
Mem Inst Oswaldo Cruz ; 114: e190054, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31411308

RESUMEN

BACKGROUND: The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES: To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS: The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS: Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION: The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Malaria Vivax/parasitología , Mefloquina/farmacología , Plasmodium vivax/efectos de los fármacos , Proteínas Protozoarias/genética , Genotipo , Humanos , Pruebas de Sensibilidad Parasitaria , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la Polimerasa
18.
Parasitol Res ; 118(1): 377-382, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30506514

RESUMEN

It is known that premature elimination of non-parasitized RBCs (nRBCs) plays an important role in the pathogenesis of malarial anemia, in which suicidal death process (eryptosis) of nRBCs has been suggested to be involved. To check this possibility, we investigate eryptosis during infection of P. berghei ANKA in Wistar rats, a malaria experimental model that, similar to human malaria, the infection courses with low parasitemia and acute anemia. As expected, P. berghei ANKA infection was marked by low parasite burdens that reached a mean peak of 3% between days six and nine post-infection and solved spontaneously. A significant reduction of the hemoglobin levels (~ 30%) was also observed on days subsequent to the peak of parasitemia, persisting until day 16 post-infection. In eryptosis assays, it was observed a significant increase in the levels of PS-exposing nRBC, which coincided with the reduction of hemoglobin levels and was positively related to anemia. In addition to PS externalization, eryptosis of nRBC induced by P. berghei infection was characterized by cytoplasm calcium influx, but not caspases activity. These results confirm our previous studies evidencing a pro-eryptotic effect of malaria infection on nRBCs and show that a caspase-independent eryptotic process is implicated in anemia induced by P. berghei ANKA infection in Wistar rats.


Asunto(s)
Anemia/fisiopatología , Eritrocitos/parasitología , Malaria/fisiopatología , Parasitemia/fisiopatología , Plasmodium berghei/fisiología , Anemia/parasitología , Animales , Apoptosis , Eriptosis , Eritrocitos/citología , Humanos , Malaria/parasitología , Masculino , Ratones , Parasitemia/parasitología , Ratas , Ratas Wistar
19.
Artículo en Inglés | MEDLINE | ID: mdl-30061292

RESUMEN

Plasmodium falciparum artemisinin-resistant parasites can be evaluated by examining polymorphisms in the kelch (PfK13) domain. A total of 69 samples from patients with falciparum malaria were analyzed. All samples were from areas in states in Brazil where the parasite was endemic: Acre (n = 14), Amapá (n = 15), Amazonas (n = 30), and Pará (n = 10). After DNA alignment with the 3D7 reference sequence, all samples were found to be wild type. These data provide a baseline for PfK13 and reinforce the pertinence of artemisinin combination therapy in Brazilian areas.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Artemisininas/uso terapéutico , Brasil , ADN Protozoario/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética
20.
Malar J ; 17(1): 338, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249260

RESUMEN

BACKGROUND: Zoonotic infections with epidemic potential, as non-human primate malaria and yellow fever (YF), can overlap geographically. Optimizing a small blood sample for diagnosis and surveillance is of great importance. Blood are routinely collected for YF diagnosis and blood clots usually discarded after serum obtention. Aiming to take sample advantage, the sensitivity of a PCR using extracted DNA from long-term frozen clots from human and non-human primates for detection of Plasmodium spp. in low parasitaemia conditions was assayed. RESULTS: Malaria diagnosis with DNA extracted from blood clots generated results in agreement with samples obtained with whole blood, including mixed Plasmodium vivax/simium and Plasmodium malariae/brasilianum infections. CONCLUSION: Blood clots from human and non-human primates may be an important and low cost source of DNA for malaria surveillance in the Atlantic Forest.


Asunto(s)
Alouatta , Callithrix , Coinfección/veterinaria , Malaria/veterinaria , Enfermedades de los Monos/diagnóstico , Plasmodium/aislamiento & purificación , Animales , Brasil , Coinfección/diagnóstico , Coinfección/parasitología , Humanos , Malaria/diagnóstico , Malaria/parasitología , Malaria Vivax/diagnóstico , Malaria Vivax/parasitología , Malaria Vivax/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium/clasificación , Plasmodium malariae/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Trombosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA