Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 399(10340): 2047-2064, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35598608

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infection in young children. We previously estimated that in 2015, 33·1 million episodes of RSV-associated acute lower respiratory infection occurred in children aged 0-60 months, resulting in a total of 118 200 deaths worldwide. Since then, several community surveillance studies have been done to obtain a more precise estimation of RSV associated community deaths. We aimed to update RSV-associated acute lower respiratory infection morbidity and mortality at global, regional, and national levels in children aged 0-60 months for 2019, with focus on overall mortality and narrower infant age groups that are targeted by RSV prophylactics in development. METHODS: In this systematic analysis, we expanded our global RSV disease burden dataset by obtaining new data from an updated search for papers published between Jan 1, 2017, and Dec 31, 2020, from MEDLINE, Embase, Global Health, CINAHL, Web of Science, LILACS, OpenGrey, CNKI, Wanfang, and ChongqingVIP. We also included unpublished data from RSV GEN collaborators. Eligible studies reported data for children aged 0-60 months with RSV as primary infection with acute lower respiratory infection in community settings, or acute lower respiratory infection necessitating hospital admission; reported data for at least 12 consecutive months, except for in-hospital case fatality ratio (CFR) or for where RSV seasonality is well-defined; and reported incidence rate, hospital admission rate, RSV positive proportion in acute lower respiratory infection hospital admission, or in-hospital CFR. Studies were excluded if case definition was not clearly defined or not consistently applied, RSV infection was not laboratory confirmed or based on serology alone, or if the report included fewer than 50 cases of acute lower respiratory infection. We applied a generalised linear mixed-effects model (GLMM) to estimate RSV-associated acute lower respiratory infection incidence, hospital admission, and in-hospital mortality both globally and regionally (by country development status and by World Bank Income Classification) in 2019. We estimated country-level RSV-associated acute lower respiratory infection incidence through a risk-factor based model. We developed new models (through GLMM) that incorporated the latest RSV community mortality data for estimating overall RSV mortality. This review was registered in PROSPERO (CRD42021252400). FINDINGS: In addition to 317 studies included in our previous review, we identified and included 113 new eligible studies and unpublished data from 51 studies, for a total of 481 studies. We estimated that globally in 2019, there were 33·0 million RSV-associated acute lower respiratory infection episodes (uncertainty range [UR] 25·4-44·6 million), 3·6 million RSV-associated acute lower respiratory infection hospital admissions (2·9-4·6 million), 26 300 RSV-associated acute lower respiratory infection in-hospital deaths (15 100-49 100), and 101 400 RSV-attributable overall deaths (84 500-125 200) in children aged 0-60 months. In infants aged 0-6 months, we estimated that there were 6·6 million RSV-associated acute lower respiratory infection episodes (4·6-9·7 million), 1·4 million RSV-associated acute lower respiratory infection hospital admissions (1·0-2·0 million), 13 300 RSV-associated acute lower respiratory infection in-hospital deaths (6800-28 100), and 45 700 RSV-attributable overall deaths (38 400-55 900). 2·0% of deaths in children aged 0-60 months (UR 1·6-2·4) and 3·6% of deaths in children aged 28 days to 6 months (3·0-4·4) were attributable to RSV. More than 95% of RSV-associated acute lower respiratory infection episodes and more than 97% of RSV-attributable deaths across all age bands were in low-income and middle-income countries (LMICs). INTERPRETATION: RSV contributes substantially to morbidity and mortality burden globally in children aged 0-60 months, especially during the first 6 months of life and in LMICs. We highlight the striking overall mortality burden of RSV disease worldwide, with one in every 50 deaths in children aged 0-60 months and one in every 28 deaths in children aged 28 days to 6 months attributable to RSV. For every RSV-associated acute lower respiratory infection in-hospital death, we estimate approximately three more deaths attributable to RSV in the community. RSV passive immunisation programmes targeting protection during the first 6 months of life could have a substantial effect on reducing RSV disease burden, although more data are needed to understand the implications of the potential age-shifts in peak RSV burden to older age when these are implemented. FUNDING: EU Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU).


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Preescolar , Costo de Enfermedad , Salud Global , Mortalidad Hospitalaria , Hospitalización , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/epidemiología
2.
Emerg Infect Dis ; 27(8): 2224-2227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287138

RESUMEN

Two variants of highly pathogenic avian influenza A(H5N8) virus were detected in dead poultry in Western Siberia, Russia, during August and September 2020. One variant was represented by viruses of clade 2.3.4.4b and the other by a novel reassortant between clade 2.3.4.4b and Eurasian low pathogenicity avian influenza viruses circulating in wild birds.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética , Federación de Rusia/epidemiología , Siberia/epidemiología
3.
J Med Virol ; 93(10): 5846-5852, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34081328

RESUMEN

Geographical variation in severe acute respiratory syndrome coronavirus 2 (SARS--CoV--2) spread requires seroprevalence studies based on local tests, but robust validation is needed. We summarize an evaluation of antibody tests used in a serological study of SARS--CoV--2 in Saint Petersburg, Russia. We validated three different antibody assays: chemiluminescent microparticle immunoassay (CMIA) Abbott Architect SARS--CoV--2 immunoglobulin G (IgG), enzyme- linked immunosorbent assay (ELISA) CoronaPass total antibodies test, and ELISA SARS--CoV--2--IgG--EIA--BEST. Clinical sensitivity was estimated with the SARS--CoV--2 polymerase chain reaction (PCR) test as the gold standard using manufacturer recommended cutoff. Specificity was estimated using pre-pandemic sera samples. The median time between positive PCR test results and antibody tests was 21 weeks. Measures of concordance were calculated against the microneutralization test (MNA).Sensitivity was equal to 91.1% (95% confidence intervbal [CI]: 78.8-97.5), 90% (95% CI: 76.4-96.4), and 63.1% (95% CI [50.2-74.7]) for ELISA Coronapass, ELISA Vector-Best, and CMIA Abbott, respectively. Specificity was equal to 100% for all the tests. Comparison of receiver operating characteristics has shown lower AUC for CMIA Abbott. The cut-off SC/O ratio of 0.28 for CMIA Abbott resulted in a sensitivity of 80% at the same level of specificity. Less than 33% of the participants with positive antibody test results had neutralizing antibodies in titers 1:80 and above. Antibody assays results and MNA correlated moderately. This study encourages the use of local antibody tests and sets the reference for seroprevalence correction. Available tests' sensitivity allows detecting antibodies within the majority of PCR- positive individuals. The Abbott assay sensitivity can be improved by incorporating a new cut-off. Manufacturers' test characteristics may introduce bias into the study results.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/sangre , COVID-19/sangre , COVID-19/epidemiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo , Federación de Rusia/epidemiología , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
4.
Sci Rep ; 14(1): 14981, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951546

RESUMEN

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war, consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on the pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB-treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.


Asunto(s)
Etanol , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico , Bromuro de Piridostigmina , Animales , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/patología , Masculino , Bromuro de Piridostigmina/farmacología , Ratones , Etanol/efectos adversos , Etanol/toxicidad , Permetrina/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Insecticidas/toxicidad , Insecticidas/efectos adversos , Modelos Animales de Enfermedad
5.
Front Immunol ; 15: 1442160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100673

RESUMEN

The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1. The antibody was identified through sorting the SARS-CoV-1 RBD-stained individual B cells that were isolated from the blood of a vaccinated donor following a breakthrough infection. In vitro, iC1 potently neutralizes pseudoviruses expressing a wide range of SARS-CoV-2 Spike variants, including those of the XBB sublineage. In an hACE2-transgenic mouse model, iC1 provided effective protection against the Wuhan strain of the virus as well as the BA.5 and XBB.1.5 variants. Therefore, iC1 can be considered as a potential component of the broadly neutralizing antibody cocktails resisting the SARS-CoV-2 mutation escape.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Ratones Transgénicos , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias/prevención & control , Betacoronavirus/inmunología , Betacoronavirus/genética , Anticuerpos ampliamente neutralizantes/inmunología , Modelos Animales de Enfermedad , Neumonía Viral/inmunología , Neumonía Viral/virología , Neumonía Viral/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/prevención & control
6.
Nat Commun ; 15(1): 3083, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600104

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection in young children and the second leading cause of infant death worldwide. While global circulation has been extensively studied for respiratory viruses such as seasonal influenza, and more recently also in great detail for SARS-CoV-2, a lack of global multi-annual sampling of complete RSV genomes limits our understanding of RSV molecular epidemiology. Here, we capitalise on the genomic surveillance by the INFORM-RSV study and apply phylodynamic approaches to uncover how selection and neutral epidemiological processes shape RSV diversity. Using complete viral genome sequences, we show similar patterns of site-specific diversifying selection among RSVA and RSVB and recover the imprint of non-neutral epidemic processes on their genealogies. Using a phylogeographic approach, we provide evidence for air travel governing the global patterns of RSVA and RSVB spread, which results in a considerable degree of phylogenetic mixing across countries. Our findings highlight the potential of systematic global RSV genomic surveillance for transforming our understanding of global RSV spread.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Lactante , Niño , Humanos , Preescolar , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Filogenia , Virus Sincitial Respiratorio Humano/genética , Genómica , Infecciones del Sistema Respiratorio/epidemiología
7.
Trop Med Infect Dis ; 9(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276631

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. Virus-specific monoclonal antibodies (mAbs) can be used for diagnosis, prophylaxis, and research of RSV pathogenesis. A panel of 16 anti-RSV mAbs was obtained from mice immunized by RSV strain Long. Half of them had virus-neutralizing activity. According to Western blot all of these mAbs effectively bound native oligomeric (homodimeric and homotrimeric) forms of the RSV fusion (F) protein. Only five of the mAbs interacted with the monomeric form, and only one of these possessed neutralizing activity. None of these mAbs, nor the commercial humanized neutralizing mAb palivizumab, reacted with the denaturated F protein. Thus, interaction of all these mAbs with F protein had clear conformational dependence. Competitive ELISA and neutralization assays allowed the identification of nine antigenic target sites for the interaction of mAb with the F protein. Five partially overlapping sites may represent a complex spatial structure of one antigenic determinant, including one neutralizing and four non-neutralizing epitopes. Four sites (three neutralizing and one non-neutralizing) were found to be distinct. As a result of virus cultivation RSV-A, strain Long, in the presence of a large amount of one of the neutralizing mAbs, an escape mutant with a substitution, N240S, in the F protein, was obtained. Thus, it was shown for the first time that position 240 is critical for the protective effect of an anti-RSV antibody. To assess the ability of these mAbs to interact with modern RSV strains circulating in St. Petersburg (Russia) between 2014 and 2022, 73 RSV-A and 22 RSV-B isolates were analyzed. Six mAbs were directed to conserved epitopes of the F protein as they interacted most efficiently with both RSV subtypes in a fixed cell-ELISA and could be used for diagnostic assays detecting RSV.

8.
Viruses ; 15(10)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37896792

RESUMEN

The comparison of the development of the SARS-CoV-2 epidemic in several neighboring regions can help researchers to assess the risks and develop more effective strategies and approaches in the field of preventive medicine. We analyzed the infection and mortality statistics for the 2020-2022 period in ten individual regions of the Siberian Federal District of Russia. We also sequenced complete genomes, which allowed us to analyze the genetic diversity of SARS-CoV-2 circulated in each of the ten regions and to build a phylogenetic dendrogram for the virus variants. The ParSeq v.1.0 software was developed to automate and speed up the processing and analysis of viral genomes. At the beginning of the pandemic, in the first two waves, the B.1.1 variant (20B) dominated in all regions of the Siberian Federal District. The third and fourth waves were caused by the Delta variant. Mortality during this period was at a maximum; the incidence was quite high, but the number of deposited genomes with GISAID during this period was extremely low. The maximum incidence was at the beginning of 2022, which corresponds to the arrival of the Omicron variant in the region. The BA.5.2 variant became the dominant one. In addition, by using NextClade, we identified three recombinants in the most densely populated areas.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Siberia/epidemiología , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , Pandemias
9.
Antiviral Res ; 217: 105681, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499699

RESUMEN

We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty. Then, we conducted in vitro experiments to investigate the antiviral activity of selected compounds on HSV-1 infection, which is susceptible to DHODH inhibitors. Among the tested compounds, seven displayed statistically significant antiviral effects, with Comp 19 being the most potent inhibitor. We found that Comp 19 exerted its antiviral effect in a dose-dependent manner (IC50 = 1.1 µM) and exhibited the most significant antiviral effect when added before viral infection. In the biochemical assay, Comp 19 inhibited human DHODH in a dose-dependent manner with the IC50 value of 7.3 µM. Long-timescale molecular dynamics simulations (1000 ns) revealed that Comp 19 formed a very stable complex with human DHODH. Comp 19 also displayed broad-spectrum antiviral activity and suppressed cytokine production in THP-1 cells. Overall, our study provides evidence that AVS could be successfully implemented to discover novel DHODH inhibitors with broad-spectrum antiviral activity.


Asunto(s)
Antivirales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Antivirales/farmacología , Antivirales/química , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología
10.
Viruses ; 15(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36992443

RESUMEN

Wild aquatic birds are generally identified as a natural reservoir of avian influenza viruses (AIVs), where a high diversity of subtypes has been detected. Some AIV subtypes are considered to have relatively low prevalence in wild bird populations. Six-year AIV surveillance in Siberia revealed sporadic cases of the rarely identified H14-subtype AIV circulation. Complete genome sequencing of three H14 isolates were performed, and the analysis indicated interconnections between low pathogenic avian influenza (LPAI) viruses. We conducted hemagglutination inhibition and virus neutralization assays, estimated the susceptibility of isolates to neuraminidase inhibitors, and characterized receptor specificity. Our study revealed circulation of a new H14N9 subtype described for the first time. However, the low prevalence of the H14-subtype AIV population may be the reason for the underestimation of the diversity of H14-subtype AIVs. According to the available data, a region in which H14-subtype viruses were detected several times in 2007-2022 in the Eastern Hemisphere is Western Siberia, while the virus was also detected once in South Asia (Pakistan). Phylogenetic analysis of HA segment sequences revealed the circulation of two clades of H14-subtype viruses originated from initial 1980s Eurasian clade; the first was detected in Northern America and the second in Eurasia.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Filogenia , Animales Salvajes , Aves , Asia del Norte
11.
Viruses ; 15(7)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37515103

RESUMEN

The Omicron variant of SARS-CoV-2 rapidly spread worldwide in late 2021-early 2022, displacing the previously prevalent Delta variant. Before 16 December 2021, community transmission had already been observed in tens of countries globally. However, in Russia, the majority of reported cases at that time had been sporadic and associated with travel. Here, we report an Omicron outbreak at a student dormitory in Saint Petersburg between 16-29 December 2021, which was the earliest known instance of a large-scale community transmission in Russia. Out of the 465 sampled residents of the dormitory, 180 (38.7%) tested PCR-positive. Among the 118 residents for whom the variant had been tested by whole-genome sequencing, 111 (94.1%) were found to carry the Omicron variant. Among these 111 residents, 60 (54.1%) were vaccinated or had reported a previous infection of COVID-19. Phylogenetic analysis confirmed that the outbreak was caused by a single introduction of the BA.1.1 sub-lineage of the Omicron variant. The dormitory-derived clade constituted a significant proportion of BA.1.1 samples in Saint Petersburg and has spread to other regions of Russia and even to other countries. The rapid spread of the Omicron variant in a population with preexisting immunity to previous variants underlines its propensity for immune evasion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Filogenia , Brotes de Enfermedades , Federación de Rusia/epidemiología
12.
Viruses ; 15(8)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37632122

RESUMEN

The COVID-19 pandemic had a profound impact on influenza activity worldwide. However, as the pandemic progressed, influenza activity resumed. Here, we describe the influenza epidemic of high intensity of the 2022-2023 season. The epidemic had an early start and peaked in week 51.2022. The extremely high intensity of the epidemic may have been due to a significant decrease in herd immunity. The results of PCR-testing of 220,067 clinical samples revealed that the influenza A(H1N1)pdm09 virus dominated, causing 56.4% of positive cases, while A(H3N2) influenza subtype accounted for only 0.6%, and influenza B of Victoria lineage-for 34.3%. The influenza vaccine was found to be highly effective, with an estimated effectiveness of 92.7% in preventing admission with laboratory-confirmed influenza severe acute respiratory illness (SARI) cases and 54.7% in preventing influenza-like illness/acute respiratory illness (ILI/ARI) cases due to antigenic matching of circulated viruses with influenza vaccine strains for the season. Full genome next-generation sequencing of 1723 influenza A(H1N1)pdm09 viruses showed that all of them fell within clade 6B.1A.5.a2; nine of them possessed H275Y substitution in the NA gene, a genetic marker of oseltamivir resistance. Influenza A(H3N2) viruses belonged to subclade 3C.2a1b.2a.2 with the genetic group 2b being dominant. All 433 influenza B viruses belonged to subclade V1A.3a.2 encoding HA1 substitutions A127T, P144L, and K203R, which could be further divided into two subgroups. None of the influenza A(H3N2) and B viruses sequenced had markers of resistance to NA inhibitors. Thus, despite the continuing circulation of Omicron descendant lineages, influenza activity has resumed in full force, raising concerns about the intensity of fore coming seasonal epidemics.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H1N1 del Virus de la Influenza A/genética , Estaciones del Año , Eficacia de las Vacunas , Subtipo H3N2 del Virus de la Influenza A/genética , Pandemias , Federación de Rusia/epidemiología
13.
Nat Commun ; 14(1): 149, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627290

RESUMEN

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
14.
Lancet Infect Dis ; 23(7): 856-866, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36940703

RESUMEN

BACKGROUND: Nirsevimab is an extended half-life monoclonal antibody to the respiratory syncytial virus (RSV) fusion protein that has been developed to protect infants for an entire RSV season. Previous studies have shown that the nirsevimab binding site is highly conserved. However, investigations of the geotemporal evolution of potential escape variants in recent (ie, 2015-2021) RSV seasons have been minimal. Here, we examine prospective RSV surveillance data to assess the geotemporal prevalence of RSV A and B, and functionally characterise the effect of the nirsevimab binding-site substitutions identified between 2015 and 2021. METHODS: We assessed the geotemporal prevalence of RSV A and B and nirsevimab binding-site conservation between 2015 and 2021 from three prospective RSV molecular surveillance studies (the US-based OUTSMART-RSV, the global INFORM-RSV, and a pilot study in South Africa). Nirsevimab binding-site substitutions were assessed in an RSV microneutralisation susceptibility assay. We contextualised our findings by assessing fusion-protein sequence diversity from 1956 to 2021 relative to other respiratory-virus envelope glycoproteins using RSV fusion protein sequences published in NCBI GenBank. FINDINGS: We identified 5675 RSV A and RSV B fusion protein sequences (2875 RSV A and 2800 RSV B) from the three surveillance studies (2015-2021). Nearly all (25 [100%] of 25 positions of RSV A fusion proteins and 22 [88%] of 25 positions of RSV B fusion proteins) amino acids within the nirsevimab binding site remained highly conserved between 2015 and 2021. A highly prevalent (ie, >40·0% of all sequences) nirsevimab binding-site Ile206Met:Gln209Arg RSV B polymorphism arose between 2016 and 2021. Nirsevimab neutralised a diverse set of recombinant RSV viruses, including new variants containing binding-site substitutions. RSV B variants with reduced susceptibility to nirsevimab neutralisation were detected at low frequencies (ie, prevalence <1·0%) between 2015 and 2021. We used 3626 RSV fusion-protein sequences published in NCBI GenBank between 1956 and 2021 (2024 RSV and 1602 RSV B) to show that the RSV fusion protein had lower genetic diversity than influenza haemagglutinin and SARS-CoV-2 spike proteins. INTERPRETATION: The nirsevimab binding site was highly conserved between 1956 and 2021. Nirsevimab escape variants were rare and have not increased over time. FUNDING: AstraZeneca and Sanofi.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estudios Prospectivos , Proyectos Piloto , SARS-CoV-2 , Virus Sincitial Respiratorio Humano/genética , Glicoproteínas , Sitios de Unión
15.
Open Forum Infect Dis ; 10(6): ofad244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383245

RESUMEN

Background: The Global Influenza Hospital Surveillance Network (GIHSN) was established in 2012 to conduct coordinated worldwide influenza surveillance. In this study, we describe underlying comorbidities, symptoms, and outcomes in patients hospitalized with influenza. Methods: Between November 2018 and October 2019, GIHSN included 19 sites in 18 countries using a standardized surveillance protocol. Influenza infection was laboratory-confirmed with reverse-transcription polymerase chain reaction. A multivariate logistic regression model was utilized to analyze the extent to which various risk factors predict severe outcomes. Results: Of 16 022 enrolled patients, 21.9% had laboratory-confirmed influenza; 49.2% of influenza cases were A/H1N1pdm09. Fever and cough were the most common symptoms, although they decreased with age (P < .001). Shortness of breath was uncommon among those <50 years but increased with age (P < .001). Middle and older age and history of underlying diabetes or chronic obstructive pulmonary disease were associated with increased odds of death and intensive care unit (ICU) admission, and male sex and influenza vaccination were associated with lower odds. The ICU admissions and mortality occurred across the age spectrum. Conclusions: Both virus and host factors contributed to influenza burden. We identified age differences in comorbidities, presenting symptoms, and adverse clinical outcomes among those hospitalized with influenza and benefit from influenza vaccination in protecting against adverse clinical outcomes. The GIHSN provides an ongoing platform for global understanding of hospitalized influenza illness.

16.
J Glob Health ; 12: 04009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35136600

RESUMEN

BACKGROUND: Influenza and respiratory syncytial virus (RSV) are among the leading causes of lower respiratory tract infections worldwide. We conducted a comparative analysis of the age distribution and spatiotemporal epidemiology of influenza and RSV in Russia using sentinel surveillance data from 2013-14 to 2018-19 in six cities located in the western, central, and eastern regions of the country. METHODS: We calculated the positivity rate for influenza and RSV (by month, season, and overall) in each city, separately for patients seen at the primary and secondary care level (out-patients medical centres housing GP practices and infectious diseases hospitals, respectively). We compared the age distribution of patients infected with the different influenza virus (sub)types and RSV. RESULTS: A total of 17 551 respiratory specimens were included: the overall positivity rate was 13.5% for influenza and 4.4% for RSV. The A(H1N1)pdm09, A(H3N2) and B virus (sub)types caused 31.3%, 44.0% and, respectively, 24.7% of all influenza cases. The median age was older among influenza (15 years) than among RSV patients (3 years); differences across influenza virus (sub)types were seen only at the primary care level, with influenza A(H3N2) patients being significantly older than A(H1N1)pdm09 or B influenza patients. The timing of influenza epidemics was similar across cities, with the peak typically occurring in February or March. In contrast, the typical peak timing of RSV epidemics varied largely across cities, and the virus was often detected also in spring and summer months (unlike influenza). CONCLUSIONS: Influenza and RSV epidemiology differed in many regards in Russia, especially in the timing of epidemics and the age distribution of infected subjects. Health policies aimed at containing the burden of diseases of viral respiratory infections in Russia should take these findings into account.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Adolescente , Humanos , Lactante , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estaciones del Año
17.
Viruses ; 14(9)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36146716

RESUMEN

Influenza circulation was substantially reduced after March 2020 in the European region and globally due to the wide introduction of non-pharmaceutical interventions (NPIs) against COVID-19. The virus, however, has been actively circulating in natural reservoirs. In summer 2021, NPIs were loosened in Russia, and influenza activity resumed shortly thereafter. Here, we summarize the epidemiological and virological data on the influenza epidemic in Russia in 2021-2022 obtained by the two National Influenza Centers. We demonstrate that the commonly used baseline for acute respiratory infection (ARI) is no longer sufficiently sensitive and BL for ILI incidence was more specific for early recognition of the epidemic. We also present the results of PCR detection of influenza, SARS-CoV-2 and other respiratory viruses as well as antigenic and genetic analysis of influenza viruses. Influenza A(H3N2) prevailed this season with influenza B being detected at low levels at the end of the epidemic. The majority of A(H3N2) viruses were antigenically and genetically homogenous and belonged to the clade 3C.2a1b.2a.2 of the vaccine strain A/Darwin/9/2021 for the season 2022-2023. All influenza B viruses belonged to the Victoria lineage and were similar to the influenza B/Austria/1359417/2021 virus. No influenza A(H1N1)pdm09 and influenza B/Yamagata lineage was isolated last season.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Monitoreo Epidemiológico , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , ARN Viral/genética , SARS-CoV-2/genética , Estaciones del Año
18.
Biosensors (Basel) ; 12(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36551032

RESUMEN

We demonstrate the possibility of applying surface-enhanced Raman spectroscopy (SERS) combined with machine learning technology to detect and differentiate influenza type A and B viruses in a buffer environment. The SERS spectra of the influenza viruses do not possess specific peaks that allow for their straight classification and detection. Machine learning technologies (particularly, the support vector machine method) enabled the differentiation of samples containing influenza A and B viruses using SERS with an accuracy of 93% at a concentration of 200 µg/mL. The minimum detectable concentration of the virus in the sample using the proposed approach was ~0.05 µg/mL of protein (according to the Lowry protein assay), and the detection accuracy of a sample with this pathogen concentration was 84%.


Asunto(s)
Herpesvirus Cercopitecino 1 , Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Humanos , Espectrometría Raman/métodos , Gripe Humana/diagnóstico
19.
J Pers Med ; 12(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35743680

RESUMEN

Immune evasion of SARS-CoV-2 undermines current strategies tocounteract the pandemic, with the efficacy of therapeutic virus-neutralizing monoclonal antibodies (nAbs) being affected the most. In this work, we asked whether two previously identified human cross-neutralizing nAbs, iB14 (class VH1-58) and iB20 (class VH3-53/66), are capable of neutralizing the recently emerged Omicron (BA.1) variant. Both nAbs were found to bind the Omicron RBD with a nanomolar affinity, yet they displayed contrasting functional features. When tested against Omicron, the neutralizing activity of iB14 was reduced 50-fold, whereas iB20 displayed a surprising increase in activity. Thus, iB20 is a unique representative of the VH3-53/66-class of nAbs in terms of breadth of neutralization, which establishes it as a candidate for COVID-19 therapy and prophylactics.

20.
PLoS One ; 17(6): e0266945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704649

RESUMEN

BACKGROUND: The COVID-19 pandemic in Russia has already resulted in 500,000 excess deaths, with more than 5.6 million cases registered officially by July 2021. Surveillance based on case reporting has become the core pandemic monitoring method in the country and globally. However, population-based seroprevalence studies may provide an unbiased estimate of the actual disease spread and, in combination with multiple surveillance tools, help to define the pandemic course. This study summarises results from four consecutive serological surveys conducted between May 2020 and April 2021 at St. Petersburg, Russia and combines them with other SARS-CoV-2 surveillance data. METHODS: We conducted four serological surveys of two random samples (May-June, July-August, October-December 2020, and February-April 2021) from adults residing in St. Petersburg recruited with the random digit dialing (RDD), accompanied by a telephone interview to collect information on both individuals who accepted and declined the invitation for testing and account for non-response. We have used enzyme-linked immunosorbent assay CoronaPass total antibodies test (Genetico, Moscow, Russia) to report seroprevalence. We corrected the estimates for non-response using the bivariate probit model and also accounted the test performance characteristics, obtained from independent assay evaluation. In addition, we have summarised the official registered cases statistics, the number of hospitalised patients, the number of COVID-19 deaths, excess deaths, tests performed, data from the ongoing SARS-CoV-2 variants of concern (VOC) surveillance, the vaccination uptake, and St. Petersburg search and mobility trends. The infection fatality ratios (IFR) have been calculated using the Bayesian evidence synthesis model. FINDINGS: After calling 113,017 random mobile phones we have reached 14,118 individuals who responded to computer-assisted telephone interviewing (CATI) and 2,413 provided blood samples at least once through the seroprevalence study. The adjusted seroprevalence in May-June, 2020 was 9.7% (95%: 7.7-11.7), 13.3% (95% 9.9-16.6) in July-August, 2020, 22.9% (95%: 20.3-25.5) in October-December, 2021 and 43.9% (95%: 39.7-48.0) in February-April, 2021. History of any symptoms, history of COVID-19 tests, and non-smoking status were significant predictors for higher seroprevalence. Most individuals remained seropositive with a maximum 10 months follow-up. 92.7% (95% CI 87.9-95.7) of participants who have reported at least one vaccine dose were seropositive. Hospitalisation and COVID-19 death statistics and search terms trends reflected the pandemic course better than the official case count, especially during the spring 2020. SARS-CoV-2 circulation showed rather low genetic SARS-CoV-2 lineages diversity that increased in the spring 2021. Local VOC (AT.1) was spreading till April 2021, but B.1.617.2 substituted all other lineages by June 2021. The IFR based on the excess deaths was equal to 1.04 (95% CI 0.80-1.31) for the adult population and 0.86% (95% CI 0.66-1.08) for the entire population. CONCLUSION: Approximately one year after the COVID-19 pandemic about 45% of St. Petersburg, Russia residents contracted the SARS-CoV-2 infection. Combined with vaccination uptake of about 10% it was enough to slow the pandemic at the present level of all mitigation measures until the Delta VOC started to spread. Combination of several surveillance tools provides a comprehensive pandemic picture.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , Teorema de Bayes , COVID-19/epidemiología , Humanos , Pandemias , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA